RARE-EARTH ION DISTRIBUTION IN SOL-GEL GLASSES CO-DOPED WITH Al$^{3+}$

A.J. Silversmith1, N.T.T. Nguyen1, B.W. Sullivan1, D.M. Boye2, C. Ortiz2, K.R. Hoffman3

Hamilton College1, Davidson College2, Whitman College3

Sol-gel glass, terbium, energy transfer

For many applications it is essential that rare earth (RE) doped sol-gel glasses have high fluorescence yields, and therefore several mechanisms of fluorescence quenching in these materials must be overcome. We investigate interactions among RE ions that depend strongly on inter-ion distance and are exacerbated in sol-gels because dopants tend to cluster. Co-doping sol-gel glasses with Al$^{3+}$ improves RE fluorescence yield remarkably, and the generally accepted explanation for the past decade has been that Al$^{3+}$ disperses RE dopants in the matrix, reducing ion-ion energy transfer. Recently, numerical works [1,2] have attempted a detailed understanding of the role that Al$^{3+}$ plays. The first of these studies suggests the glass has regions of relatively high Al$^{3+}$ and RE concentration, compared to the rest of the network that is mostly undoped silica. This picture is different from earlier ideas, and requires reconsideration of previous evidence for Al$^{3+}$ dispersing RE clusters.

In this study, we use Tb$^{3+}$ to probe the effects of RE-RE interactions in sol-gel glass. We study energy transfer between Tb$^{3+}$ ions with pulsed laser experiments and use an analysis approach based on the Inokuti-Hirayama method. Assuming a multipolar interaction, we fit the decay curves to derive an effective local concentration for a series of samples with varying amounts of RE. When actual doping concentration is varied over two orders of magnitude, the effective local Tb concentration changes by about a factor of 10 (Fig. 1). Our results indicate that Al$^{3+}$ co-doping is only effective at dispersing RE ions when the ratio of Al:RE is 10:1 or greater. This result is consistent with ref. 2 but contradicts earlier work that used fluorescence line narrowing to demonstrate RE dispersal at much higher doping levels.

Ann Silversmith
Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 USA
asilvers@hamilton.edu

Fig. 1. Effective concentration near emitting Tb$^{3+}$ centers is lower than sample concentration for doping levels above ~0.2%.