
Chapter 1

All the world’s a bit-pattern

1.1 Introduction

Digital computers manipulate patterns of binary digits, usually called bits.
One bit is a single binary digit, just about the smallest piece of information
that you can think of. It has exactly two states called variously true and
false, high and low, on and off, one and zero, etc. We can use single bits to
represent very simple pieces of information—a switch is closed, a light must
turn on—or we can put them together to make multi-bit patterns. All that
a computer does is to manipulate those patterns.

When we use a computer we decide what the patterns mean. A single bit
pattern, such as 01001011, could mean all sorts of things. For example,
depending on the context in which it is used, 01001011 could mean

• the number seventy five
• the letter K
• one tiny sample of a sound
• how much green there should be at a particular spot in a picture
• which of a set of 8 switches is turned on and which turned off
• the instruction to subtract 1 from the value of the accumulator in a

microcomputer

or many other things. All the computer knows is that it is a pattern of bits.
It knows how to store those bits for future use and it knows how to perform
all kinds of operations on bits. It can interpret bit patterns as instructions
to do things; it can treat them as numbers and perform arithmetic on them;
it can send them to a display and show them as text or as pictures. Which
of these things happens is entirely up to the programmer. If the programmer
tells the computer to send a collection of bits to the display then they
will show up as an image, even if they were actually meant to be the text
of a laundry list. If the computer sees the pattern when it is processing
instructions then it will execute the appropriate instruction even if that bit
pattern started life as the number of pencils in the third drawer from the
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Memorize this table!
Bin Hex
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Table 1.1

right. All a computer can manipulate is bit patterns. How it manipulates
them is up to you.

1.2 Patterns of bits

The most compact representation for a single bit is a 0 or a 1. Depending on
context you might treat these single-bit value as high and low or true and
false (or even as false and true!) but the shortest way to write one bit is as
a 0 or 1. Then we can write patterns of bits as strings of 0’s or 1’s like this.

01 110100 0010111010

Bit patterns can obviously consist of any number of bits. Digital computers,
however, are designed to think of bits as coming in fixed length groups. The
fundamental number of bits in a group varies from computer to computer.
There have been computers built using at least the following numbers of
bits in their basic group, which is usually called a word

4, 8, 12, 16, 24, 36, 39, 40, 48, 64

Despite the variety of word lengths, a standard has emerged that groups bits
into bunches that are multiples of 8 bits and then gives the groups different
names thus

• 8 bits = 1 byte
• 16 bits = 2 bytes = 1 short (often called 1 word)
• 32 bits = 4 bytes = 1 long

Most current computers come in either 8-bit, 16-bit, or 32-bit lengths.
The major exceptions are some very tiny computers used in, for example,
thermostats or toasters, which only have a 4-bit word. Such a small bit
pattern, only half of a byte, is often called a nibble.

When dealing with a byte-organized computer it is usual to write all bit
patterns in whole bytes even though some of the bits might not be used in
a particular application. For example, it only takes 6 bits to represent the
states of 6 switches but it would be common to write them as a full group of
8 bits and just ignore the 2 extras. So, the bit pattern showing all 6 switches
turned on might well be displayed as 00111111.

Obviously, every written out bit pattern is also a set of characters that could
be a number. For example, the bit pattern 10 could easily be confused with
the number ten. When there is any possibility of confusion we mark a binary
pattern in some way. Here are three common ways of marking the same bit
pattern.

1101B 0b1101 11012 %1101

In this text I will usually use the 0b1101 form whenever there is a likelihood
of confusion.
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We use hex notation all the time as
a shorthand way to represent binary
numbers.

For our purposes hex is inter-
changable with binary. More pre-
cisely, hex is a shorthand way to
represent binary. It is trivial to turn
a number given in hex into one in
binary and vice versa.

1.2.1 Hex notation

Long bit patterns, such as the 32-bit and 64-bit patterns natural to a modern
computer are very time consuming to write out. A shorthand method is
universally used to get round this. A complete bit pattern is first broken up
into 4-bit sections, starting at the right hand end. Then each 4-bit group is
replaced by a unique single character representation called a hexadecimal
or hex digit. Table 1.1 shows the 16 possible 4-bit patterns and their
1-character hex representations.

Thus the binary bit pattern 0b001111001110 would be written in Hex as
3CE.

Again, we have to be careful with hex patterns since many of them are
also legal decimal numbers and some are English words. If there is any
doubt then we add a tag as we did with the binary patterns. Here are some
common ways to write the hex pattern corresponding to the bit pattern
0b001000000011.

203H 0x203 20316 $203

In this text, I will use the 0x203 or the $203 notation if there is any possibility
of confusion. A hex pattern like 3CE might well not get a $ or 0x though,
as it really does not look like anything except a hex pattern.

It is very easy to convert a binary number into its hex representation or a
hex number into its binary representation. The rules are given below.

Binary-to-Hex Conversion Hex-to-Binary conversion
1) If the number of bits is not a mul-
tiple of 4, then pad the number on
the left end with 0 bits until it is.

Replace each hex digit by its
corresponding 4-bit binary pat-
tern, keeping the order of the
bits correct.

2) Starting at the right hand end
split the number up into 4-bit groups
3) Replace each 4 bit group by its
corresponding hex digit

Let’s try a few examples.
Example 1.2.1
Convert 0b11001010010 to hex.
There are 11 bits in the pattern. That is less than a multiple of 4 so add an extra zero on the
left to get
0b011001010010
Next split the number into groups starting at the right end.
0b0110 0101 0010
Finally, replace each 4 bit group using the table.
0110 → 6, 0101 → 5, 0010 → 2 so we have 6 5 2
To be tidy, we put the whole thing back together again and attach a 0x to show that it is a hex
pattern.
0b011001010010 = 0x652

Example 1.2.2
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Significance
Since, in Arabic notation, each digit
corresponds to larger power of the
base than does its neighbor to the
right, we say that a digit is more sig-
nificant than the digits to its right.
Thus we call the leftmost digit the
most significant digit (abbreviated
msd) and the rightmost digit the
least significant digit (lsd).
When we are working with bit pat-
terns we use the terms most signifi-
cant bit (msb) and least significant
bit (lsb) for the leftmost and right-
most bits respectively.
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Figure 1.1

Convert 0b01011111011101011110101110101 to hex
Step 1: 0b01011111011101011110101110101 has 29 bits.
Pad to 32 bits getting
0b00001011111011101011110101110101
Step 2: split into 4-bit blocks to get 0000 1011 1110 1110 1011 1101 0111 0101
Step 3: replace each 4 bit block with its hex representation to get 0 B E E B D 7 5
Step 4: compact and stick a 0x on the front to get 0x0BBEEBD75

Example 1.2.3
Convert 0xFE03 to binary
Step 1: From Table 1-1 above we see that the digit F corresponds to 0b1111 so those are the first
four bits.
Step 2: Similarly E corresponds to 0b1110 so now we have 0b1111 0b1110
Step 3: Hex 0 is obviously 0b0000 and 3 is just 0b0011 so altogether we have
0b1111 0b1110 0b0000 0b0011
Step 4: Finally we remove the spaces and extra hex markers to get the 16-bit number
0b1111111000000011.

1.3 Binary Numbers

One of the commonest uses for a bit-pattern is to represent a number. We
are used to writing numbers in base 10 Arabic notation. In this scheme, we
use ten different unique symbols, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and use the
position of the digit in the number to give it extra magnitude meaning. For
example, in the number 252 we know that the 2 in the leading (leftmost)
position means two hundred while the trailing (rightmost) 2 just means two.
Each digit, working from right to left, is worth one more power of ten than
the digit to its right.

With only two states for each digit we can only write numbers in base 2
or binary. This time we have the two unique symbols, 0 and 1, and each
position corresponds to one more power of two than the one to its right.
Thus we can work out what a bit pattern like 0b0110 means as a number.
The right most 0 means that there are no 1’s in the number. The next 1 to
the right means that there is 1 two in the number. The left most 1 means
that there is 1 four in the number while the leftmost 0 means there are no
eights in the number. That gives us a total number of

0 + 2 + 4 = 6.

It is obviously no coincidence that 6 is the hex representation for the bit
pattern 0b0110!

Figure 1.1 shows the meanings of the first few bit positions and a longer
example of how to turn a bit pattern into a number.

The principle extends easily and so we can convert any bit pattern to its
corresponding decimal number. Table 1.2 is a table of powers of 2 to help.

Obviously we sometimes need to go the other way. It is a little trickier
to convert a decimal number to binary. Basically we ask if the number is
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Table 1.2: Powers of Two

20 1 27 128 214 16,384 221 2,097,152 228 268,435,456
21 2 28 256 215 32,768 222 4,194,304 229 536,870,912
22 4 29 512 216 65,536 223 8,388,608 230 1,073,741,824
23 8 210 1,024128 217 131,072 224 16,777,216 231 2,147,483,648
24 16 211 2,048 218 262,144 225 33,554,432 232 4,294,967,296
25 32 212 4,096 219 524,288 226 67,108,864 233 8,589,934,592
26 64 213 8,192 220 1,048,576 227 134,217,728 234 17,179,869,184

2432
2
2
2
2
2
2
2

121
60
30
15

7
3
1

lsb

0
0

1
1

1
1
1 msb

243 = %111100111

0

Figure 1.2

divisible by each power of two in turn. The best way to do this is to divide
the number by two for as long as we can, keeping track of the remainders.
Those remainders, taken in reverse order, form the binary representation
of the number. If we do the divisions down the page, as shown below, then
we make the binary number by reading the remainders from bottom to top.
For example, to find the bit pattern that corresponds to the number two
hundred and forty-three, whose decimal representation is 243, we perform
the calculation shown in Figure 1.2.

As the first stage, we divide 243 by 2 to get 121 remainder 1. We write the
121 below and the remainder to right. We repeat this process until there is
nothing left. In the last stage we divide 1 by 2 to get 0 remainder 1. Lastly,
we read the remainders off from bottom to top to get the answer and put a
0b on the front to show that we know it is binary.

1.3.1 Counting in binary

It is often useful to know how to count in binary. The process follows the
same pattern as counting in decimal except that it is simpler. In decimal we
increase the rightmost digit until we run out of digits at 9. Then we add
one to the next place to the left and reset this digit to 0, as below.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

In binary we do the same but we run out of digits a lot more often. It is
easy to add 1 to 0 but then we have to think. 1 is the highest value digit so
we have to add one to the next digit to the left and put a zero at the end.
That gives us

0, 1, 10

Next we add 1 to the rightmost digit making it a 1. There is no overflow so
the next number is 0b11

When we add 1 to the rightmost 1, we have to play our overflow trick. We
put a zero in the rightmost place and add 1 to the digit to its left. The digit
to the left is a 1 so the overflow happens again. We put a 0 in this place
and add 1 to the digit to the left. Since nothing is written there, that digit
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Dec. Bin. Hex
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11
18 10010 12
19 10011 13

Table 1.3: Binary,
Decimal, and Hex

Bit 0

Bit 1

Bit 2
Move

Lights

Photodetectors

Aperture
Plate

Figure 1.3: Optical Encoder

was a 0 and when we add one we have a 1 and we are done. That makes the
fourth non-zero bit pattern 100

We can continue this forever. Table 1-3 contains the first twenty numbers in
decimal, binary, 8-bit binary, and hex.

One important idea comes out of this. There are 2n unique patterns of n
bits. For example, there are four 2-bit patterns, 0b00, 0b 01, 0b10, 0b11,
and so we can represent anything that comes in only 4 or fewer states using
a 2-bit pattern. Here are some particularly useful numbers

8 bits = 256 unique patterns
10 bits = 1024 unique patterns
16 bits = 32,768 unique patterns

Because 210 is so close to one thousand, and because all things in computers
come in powers of two, we regularly misuse the terms kilo and mega for
binary numbers. When referring to binary objects, 1k is 1024 and 1M is
1024x1024 = 1048,576. So for example, 1 kilobyte of memory contains 1024
memory cells not 1000 memory cells.

1.3.2 Gray Codes

A counting sequence like this is not the only useful sequence of bit patterns,
though it is by far the most common. Other sequences are used for special
purposes. This section describes one such sequence.

Position measurements are fundamental to many different control systems.
For example, a wheeled robot builds its map of the world in terms of
how far its wheels have to turn to get from point to point. Computer
Automated Manufacturing (CAM) systems can machine extremely complex
shapes because they can move a lump of metal around a cutting tool under
computer control. They can produce the correct shapes because they can
measure the position of a work-piece very precisely. A powerful way of
converting a position into a binary is with an optical encoder (Figure 1.3).
The optical encoder is a glass or plastic plate with a pattern of dark areas
and clear spaces. Light shines through the plate and falls on a row of light
sensors, which output a 1 if light falls on them and a 0 if light is blocked.

As the plate moves, either round and round or back and forth, the pattern of
spaces moves past the sensor and the pattern of bits coming from the sensor
changes. Life is all very well when the sensor is exactly lined up with one
column of the pattern, as shown in Figure 1.3. However, when the pattern
moves, there are places where the sensor is illuminated partly by one row
and partly by the next. If you use an ordinary counting pattern on the
encoder plate, then there are places where many bits are changing at once
and a tiny position error can cause a large change in the output number.
The cure for this is to use a Gray Code. It is designed so that only one bit
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changes each time we change number.
Example 1.3.1
When we go from seven, 0111, to eight, 1000, every bit in the number has to change at once.
When the encoder plate is part way between seven and eight, it could output any number as
different bits change at slightly different times.

A Gray Code is a modified counting sequence in which the numbers no longer
have their sensible place notation. Instead, the sequence has the properties

1. Each possible n bit pattern occurs exactly once
2. Exactly one bit changes when you go from one number to the next
3. The patterns form a circular set so that only one bit changes when

you go from the last pattern to the first.

Gray codes are not unique but here is a common 3-bit version.

000, 001, 011, 010, 110, 111, 101, 100, 000, 001, 011, etc.

As you see, all 8 possible patterns are present but they occur in an unusual
order. Because only one bit changes when you go from one pattern to the
next, when the encoder is part way between two patterns only that one bit
will wobble in value and so the output will only wander between these two
values. This is much better than the counting sequence where there are
places where an error in one bit can make a huge difference in the value of
the pattern.
Example 1.3.2
When the gray code goes from 3 to 4 the output value is always either a 3 or a 4. When a
standard binary code goes from 3 to 4 then the following values could be produced if one of the
changing bits were in error
011 → 100 error in bit 0 produces 010 or 101
011 → 100 error in bit 1 produces 001 or 110
011 → 100 error in bit 2 produces 111 or 000
Thus, during the transition from a 3 to a 4 the sensor could produce any of the values
0, 1, 2, 3, 4, 5, 6, or 7

1.4 Arithmetic with binary numbers

We have seen that binary patterns naturally represent numbers. That means
that we can do arithmetic on binary numbers just as we can do arithmetic
on decimal numbers. This section explores the arithmetic of binary numbers.

1.4.1 Addition

We add two binary numbers in exactly the same way that we add two decimal
numbers, one digit at a time. The only difference is that the number of 1-bit
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1 1 1

+    1 1

0

1

1 1 1

+    1 1

1 0

11

1 1 1

+    1 1

1 0 1 0

11

addition facts is a lot smaller than the number for 1-digit addition. Here are
the 1-bit addition facts.

0 + 0 = 0 1 + 0 = 1
0 + 1 = 1 1 + 1 = 10

1 + 1 + 1 = 11

The last fact is not strictly necessary but it is useful when there has been
a carry from one bit to the next. Let’s look at an example. The binary
equivalent of 7 is 0b111 and the binary equivalent of 3 is 0b11. We know
that 7 + 3 = 10 in decimal so let’s see what happens in binary.

We start at the least significant bit. 0b1 + 0b1 = 0b10 so write down the 0
and carry the 1, just as we would in decimal addition.

Next, we move one place to the left, to the 2’s column. Here we have 0b1 +
0b1 + 0b1 = 0b11 because of the carry from the units position. We write
down the 1 and carry 1.

In the last column, we have only two digits; 0b1 + 0b1 = 0b10. Since there
are no more bits to the left, we write both bits down and we have our answer.

It works! 0b1010 is the binary representation for ten. We get the same
answer whether we work in decimal or in binary.

There are two things you should notice in this example. The first is the
pivotal role that the carry plays in passing information from bit to bit. The
second is the number of bits in the answer. We started with two numbers
that could each be represented with only three bits (3 = 0b011) but we
finished with an answer that occupies four bits. On paper this is not a
problem, but in a computer we have a fixed number of bits in each pattern.
That means that it is possible to add together two perfectly legal numbers
and get an answer that will not fit in the space available. This problem is
called overflow. Overflow occurs when the answer will not fit in the number
of bits provided, i.e. there is a carry from the leftmost bit. Overflow presents
a problem. When it occurs, the answer is wrong. For example, if we had
done our example in a true 3-bit representation then the answer would have
been 0b010 with a carry of 1. That would mean that 0b111 + 0b011 =
0b010 or 7 + 3 = 2, which is clearly not what we want.

There is no cure for overflow. Any representation that uses a fixed number
of digits, whether binary or decimal, can only represent a finite range of
numbers. When a result exceeds that number of digits, you start getting
wrong answers. The only thing you can do to avoid this is to make sure that
you always use a representation that is big enough to hold the largest number
you will encounter. For example, the 8-bit values that most computers work
with can hold positive integers up to 255. You can safely use them to count
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Algorithm
An algorithm is a set of rules for
performing an operation. One com-
mon example would be a recipe and
another would be the assembly in-
structions that come with so many
toys and pieces of furniture.
It is a set of rules with a clear order.
For it to work properly you have to
not only perform the correct steps,
you have to do them in the correct
order.
We shall see later that algorithms
are the basis of computer programs.

the lines on a page but will have to do better if you want to count the words
in a book.

It is worthwhile to note here the ranges of the common widths of number.
For each width, I give two ranges. The first is for unsigned numbers, numbers
that are always positive. The second is for signed numbers, numbers that
can be either positive or negative.

Type Bits Unsig. Range. Signed Range
char 8 0 to 255 -128 to +127
short 16 0 to 65535 -32768 to +32767

int 32 0 to 4,294,967,295 -2,147,483,648 to 2,147,483,647

Table 1.4: Number Ranges

1.4.2 Negative Numbers

We can now add binary numbers of any magnitude but before we can look
at subtraction we need to know how to represent negative numbers. As
humans, we deal with the problem of negative numbers by going outside
the scheme of the numbers. We use a separate symbol, the minus sign, to
mark negative numbers. Computers can’t do this. Remember, everything
is a bit pattern. The only way a computer can mark a negative number is
with a bit. On paper we can just stick an extra bit in front of every binary
number and say e.g., that if the bit is 0 then the number is positive and if it
is 1 then the number is negative. Inside the computer, we are limited by the
fixed size of the bit patterns and we have to steal a bit from the number to
use for a sign. Thus, while an 8-bit pattern can hold positive numbers up to
255, once you have stolen one bit to use for the sign a byte can only hold
signed numbers up to 127.

There are several different ways that we can represent signed numbers with
a sign bit and some value bits. All modern computer use 2’s complement
representation in which the top bit tells you the sign of the number, 0 for
positive and 1 for negative. The rest of the bits contain the size of the
number. Positive numbers have their usual values, e.g. 19 = 0x13, 115
= 0x73, etc. Negative numbers are more peculiar. The easiest way to
understand them is to see how they are formed. Here is the algorithm.

Algorithm to convert binary from negative to positive or vice versa

1. Write number in binary.
2. Pad to width with leading zeros.
3. Invert every bit (replace 1’s with 0’s and 0’s with 1’s).
4. Add 1 to the number.

The result is the two’s complement of the original number.
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More
positive

More
negative

+127
+126

2
1
0
-1
-2
-3

-127
-128

0111111

0111110

00000010

00000001

00000000

11111111

11111110

11111101

10000001

10000000

Figure 1.4: 8-bit 2’s comple-
ment
number line

 00010001    17

+11111101    -3

100001110    14

Figure 1.5

Example 1.4.1
Find the 2-’s complement 8-bit binary form of -19.
From Table 1-3 we know 19 = 0x13 = 0b00010011 in 8-bit binary. To find -19 we first invert all
of the bits of 0x13
0x13 = 0b00010011 -> 0b11101100 = 0xEC
and then add 1.
0xEC + 1 = 0b11101100 +1= 0b11101101=0xED.
As expected, the top bit is 1 so the number is negative.

The result of this process is that an 8-bit signed number can take on 128
different positive values, 0 → 127, and 128 negative values, −1 → −128.
There is an apparent discrepancy caused by the largest positive being +127
while the largest negative number is -128. This is because zero is positive
and uses up one positive number.

Figure 1.4 shows a number line for the 8-bit 2’s complement numbers. If you
examine the line carefully then you will see that the 8-bit representation of
-n is the same as the 8-bit unsigned number 256-n. Thus -1 has the same bit
pattern as 255, -2 the same pattern as 254, and so on. Neither you nor the
computer can tell whether a number is signed or not simply by looking at it!
Only the way that the number is used allows you to tell whether we mean a
number to be signed or unsigned. So when a computer sees the bit pattern
0b11101101 it can use that pattern as either the positive number 237 or the
negative number -19. Or, it could use it as something else entirely. A bit
pattern only represents a number when the computer programmer writes a
program that uses the pattern as a number.

One wonderful thing about 2’s complement numbers is that you can make a
negative number positive in exactly the same way that you make a positive
number negative. The negate operation is unique; invert all the bits and
add 1. So when we apply the same operation twice we get back to where we
started.

Example 1.4.2
Let’s take a number and negate it twice.
90 = 0b01011010
-90 = 0b10100101 + 1 = 0b1010011
-(-90) = 0b01011001 + 1 = 0b01011010 = +90 as wanted.

The other wonderful thing about 2’s complement numbers is that they can
be added just like ordinary binary numbers. So, for example, we can add -3
to 17 and get 14, so long as we are careful (Figure 1-5).

We have to be careful about the answer. 2’s complement is a fixed width
representation so we only keep the bottom 8 bits of the answer, 0b00001110
= 14. The operation gives the right answer and it results in a carry bit of 1.
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The bottom number in a multiplica-
tion is called the multiplier. The
top number is called the multipli-
cand and the answer is the prod-
uct.

   1101

   1011

1011000

×

   1101

   1011

1011000

  11010

×

f you subtract a larger unsigned number from a smaller then the answer is
automatically the correct signed number. This is even true if one or both of
the original positive numbers is too big to fit in a signed value. For example

231−−245 = 0xE7− 0xF5 = 0xF2

which is the correct signed 8-bit representation of –14.

One problem arises when we move from unsigned numbers to signed, 2’s
complement, numbers; we can no longer use the carry flag to signal overflow.
Overflow occurs when the result will not fit in the current representation. In
8-bit 2’s complement notation the largest positive number we can represent
is 127. Thus if we add 100 and 46 we get a number that will fit in an 8-bit
unsigned value but not in a signed one. Similarly, if we subtract 43 from -100,
we get a value that overflows the representation. The signs that overflow has
occurred are a bit more complex than they were with unsigned numbers but
a little logic can easily determine when it has happened. This information
can be saved in a flag in the same way that the carry is saved. Such a flag is
called an overflow flag and it is available on a lot of computers. If you are
worried about the validity of your arithmetic then you can check the state
of the overflow flag and take some action if an error has occurred.

1.4.3 Multiplication

Long multiplication in binary is both simpler than it is in decimal and much
more long winded. There are no multiplication tables to learn since you only
ever have to multiply by one (copy) or by zero (omit). However, since we
only know how to add binary numbers two at a time, the addition of all the
partial sums can get fiddly.

It is easiest to understand with an example and to keep the example reason-
ably short we will multiply two 4 bit numbers,

13× 11 = 0b1101× 0b1011

We will start with the leftmost bit of the multiplier. Since there are three
digits to the right of this bit, we start by writing down three zeros on the
right-hand end of the answer line. Next we multiply the top number by one,
working from right to left, and write the digits down. Because multiplication
by 1 is trivial, we simply copy the top number down in the answer.

Once we are done with the most significant digit, we move down to the next
digit. This one is a zero. Anything we multiply by it will also be zero so we
shall skip this digit.

The next digit along is another 1. We start a new line in the answer and
again we write down a zero for every place to the right, one in this case.
Then we do the multiplication by copying the top line into place.
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    1101

    1011

 1011000

   11010

10000010

    1011

10001101

×

1 11

1

Because the top bit of a 2’s com-
plement number contains the sign
information, this shifting trick only
works for signed numbers if you are
careful to treat the top bit sepa-
rately. Computers usually provide
a special pair of left and right shift
operations called arithmetic shifts
(as opposed to logical shifts) that
take care of this for you.

At this point we have two partial results and we have to add them together
in the usual fashion. Note that this has produced an answer with 8 bits in
it. This is normal; multiplication increases the number of bits needed to
represent the answer. Indeed if we multiply two n bit numbers together the
answer will in general need 2n bits to hold it.

The intermediate sum replaces the two lines that went to make it up. We
have one last digit, the least significant, in the multiplier. It is again a 1
and so we copy down the multiplicand for the last time and perform one
last addition to get the final answer; 10b0001101 = 0x8F.

So the final answer to our long multiplication is that 13×11 = 0xD×0xA =
0x8F = 143. So the method works.

As we have just seen, if you multiply two n-bit numbers together then you
get a 2n-bit answer. Since computers are fundamentally tied to fixed-length
bit patterns this produces a problem. Real machines usually handle it by
saving a double-length result in two storage locations, one after another.
However, there may be very little that you can do with such a double-sized
number other than truncate it back to the original length and take note if
you throw anything away by doing this!

It is worth noting that almost all computers used to perform multiplication
one bit at a time in just the way that we have seen. This made multiplication
take much longer than addition or subtraction. It is possible to design
a circuit that can multiply two numbers in about the same time as it
takes to add them, but it is extremely complex. Such parallel multipliers
used to appear only on computers that need to perform vast numbers of
multiplications in a very short time; the classic example is digital signal
processing computers. However, the number of transistors that we can put
on a chip has now grown so large that desktop computers, and even some
embedded systems, routinely incorporate multiplication hardware that is
practically as fast as addition.

In systems where multiplication is very slow there is a trick that is worth
remembering. You can multiply a binary number by 2 simply by shifting it
one place to the left. This is like multiplying a decimal number by 10 by
shifting it one place to the left. This can be extended. A shift of two places
to the left is equivalent to multiplying by 4, a 3 place shift to multiplying
by 8, etc. Similarly, you can divide a binary number by a power of two by
shifting to the right. A shift of 1 place to the right is equivalent to dividing
by 2 and so on.

1.4.4 Division

Long division is one of the nastiest pieces of arithmetic that most of us have
ever had to learn. It is not significantly nicer in binary. The principle is the
same. Start from the most significant end of the dividend and keep trying
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to subtract the divisor. There is one slight simplification in binary. There is
no question of how many times you can subtract the divisor; the choice is
either 1 or 0.

Just as multiplication increases the width of numbers, so division reduces it.
A computer that provides an 8-bit × 8-bit→16-bit multiplication often also
provides a 16-bit/8-bit→8-bit divide. The problem with division is that it is
rarely exact. When you multiply one integer by another you always get an
integer answer. When you divide one integer by another you usually don’t
get an integer answer. Computers deal with this by returning the remainder
as well as the quotient.
Example 1.4.3
We’ll divide the 143 that we got from our multiplication example by 12.
0b1100 into 0b1 can’t be done so we write down a zero for the first bit of the answer.
We keep working along to the right one bit at a time finding that 0b1100 will not divide the
dividend until we have 5 bits. 0b1100 into 0b10001 can be done so we have a 1 in the quotient
and we subtract 0b1100 from 0b10001.
Because we only know how to do subtraction by adding the 2’s complement of the number we
are subtracting it is best to do the subtractions off to one side or on a separate piece of paper.
When we do that we find that 0x10001-0x1100 = 0x101.
Now, just as we would in decimal, we use 0b101 as the first bits of the new quotient and bring
bits down to join it. The first bit to come down is a 1, making 0x1011. 0x1100 does not divide
0x1011 so the next digit in the answer is another 0.
We keep going in the same way. The next bit to come down is also a 1 so our new dividend is
0x10111. 0x1100 does divide into 0x10111 so the next bit of the answer is 1 and we have another
subtraction; 0x10111-0x1100=0x1011.
Again, we start bringing down bits to join the 0b1011. The only bit left is a 1 and 0x1100 does
divide 0x10111 so the last bit in the quotient is another 1 and we have
Our division is complete. We find that 0b10001111/0b1100 = 0b1011 remainder 0b1011. That
is, 143/12 = 11 remainder 11. So it works.

Notice that, unlike multiplication, division can overflow. Because the div-
idend is twice as long as the divisor, which could be as small as 1, it is
possible for there to be more significant digits in the quotient than will fit.
If this happens, the operation has overflowed and all we can do is set a flag
and hope the program notices. Worse still, division can fail altogether. We
know that we can’t divide a number by 0, but it is possible for a program to
try (in error, we hope). When that happens we have to abort the operation
and warn the user somehow. We shall see how some computers deal with
problems like this later on. For now, try to avoid dividing by zero!

1.4.5 Multiple Precision Arithmetic

Most computers provide instructions that support addition of 8-bit numbers
and often also 16-bit numbers. More powerful computers support 32-bit
numbers and even 64-bit numbers. However, all computers give up at some
point. What do you do if you need a number that is larger than the largest
your computer supports? The answer is to spread the information over two
or more numbers.
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For example, if your computer can read, write, and add 8-bit bytes, then you
can use 16-bit quantities by spreading them across two bytes. You put the
rightmost 8 bits, the least significant bits, in one byte, and put the leftmost
8 bits, the most significant bits, in the other byte.

Addition

Although there may be no instructions to add 16-bit quantities, you can use
the fact that addition takes place one bit at a time, from right to left, to do
the addition one byte at a time. First, you add together the least significant
bytes from the two numbers, keeping track of any carry that occurs. The
resulting byte is the bottom 8 bits of the answer. Next you add together the
most significant bytes and add in the carry from the previous stage. The
result is the top 8 bits of the answer. If there is a carry from this stage
then you have overflowed the capacity of even 16-bits. If you need to use
even bigger numbers then you just spread them over more bytes and do the
arithmetic the same way, one byte at a time. The only trick is that you have
to remember to include the carry from the previous byte when adding the
more significant bytes.

Note that in order to implement multi-byte addition like this we need to
save the carry from each operation so that we can use it in the next most
significant operation. We need to have a Carry bit separate from the normal
data bits. Computers often provide two different addition operations. The
usual operation adds two bytes and sets the flag while the second one includes
the carry in the addition, just the way we did in the example.
Example 1.4.4
That all sounds more complicated than it is. Let’s try it with some numbers. We’ll add 1,475,399
to 13,236,432 and hope that we get 14,711,831. Those are mighty big numbers, much larger than
the 32,767 maximum for 16-bit numbers so we’ll use 32-bit numbers spread over 4 bytes each.
Note that I am writing all the bit patterns in hex rather than binary because the numbers are so
long. I encourage you to check the working as we go, using a calculator that speaks hex.

• 1,475, 399 = 0x168347 so we store this as the 4 bytes 0x00 0x16 0x83 0x47
• 13,236,432 = 0xC9F8D0 which we store as the 4 bytes 0x00 0xC9 0xF8 0xD0
• We start addition by adding together the least significant bytes
• 0x47 + 0xD0 = 0x117 so the least significant byte of the result is 0x17

and we carry the 1
• 0x83 + 0xF8 + Carry = 0x17C giving us 0x7C carry 1.
• 0x16 + 0xC9 + Carry = 0xE0, which gives us 0xE0 with no carry.
• 0x00 + 0x00 + 0 = 0x00 and our most significant byte is 0x00.

There is no carry from this byte so the answer does not overflow.
Note that we still have to include the carry from the previous byte, but this time the carry
was 0.

• So the answer is 0x00 0xE0 0x7C 0x17 with no carry.
That is our representation of the hex number 0xE07C17 = 14,711,831. It worked.

Subtraction

Just as we can extend addition to multi-byte numbers using the carry, so
we can extend subtraction. We use the same flag for both operations and
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There must be a subtract instruction
that takes the Carry/Borrow into
account in just the same way that
there is a separate add instruction
that uses the Carry.

Unicode
Because the ASCII code is limited,
even in its extended forms, to 8
bits, it can only handle 256 char-
acters. That is far more than En-
glish needs but it is not sufficient to
handle non-English languages. As
computers have spread into all parts
of the world people have come to
need a way to represent any mix-
ture of languages. This has lead to
the development of a 16-bit encod-
ing called Unicode. Unicode already
includes characters and ideographs
for all the major languages of the
world, including Chinese, and work
is underway to make it cover all the
rest as well. In its basic form Uni-
code can represent more than 65,000
different characters and the exten-
sions push this into the millions. For
maximum compatibility with exist-
ing systems Unicode defines an 8-bit
subset that includes the standard
ASCII code. For more information
you can visit the Unicode web site
at www.unicode.org.

sometimes extend the flag’s name to Carry/Borrow. We subtract two multi-
byte numbers one byte at a time, working from least significant to most
significant byte. For example, we subtract two 2-byte numbers like this:

1. Subtract the bottom byte of number B from the bottom byte of number
A. Save the carry/borrow.

2. Store the result as the bottom byte of the answer.
3. Subtract the top byte of B from the top byte of A taking the

carry/borrow into account.
4. Save the result as the top byte of the answer.

Example 1.4.5
Let’s subtract 0x64D0 = 25,808 from 0x4E6B = 20,075.

1. Subtract 0xD0 from 0x6B.
• First we find the 2’s complement of 0xD0
• - 0xD0 = 0x2F + 1 = 0x30
• Add 0x6B and 0x30 to get 0x9B with Carry = 0, so that Borrow = 1.

2. Store 0x9B as the bottom byte of the answer.
3. Subtract 0x64 from 0x4E with borrow.

• First we find the 2’s complement of 0x64 - 0x64 = 0x9B + 1 = 0x9C.
• Add 0x4E and 0x9C to get 0xEA and subtract the borrow to get 0xE9.

4. Store 0xE9 as top byte of answer.
5. Answer is 0xE99B = -5733. It works!

1.5 Bit Patterns as Text

While we spend a lot of our time using bit patterns to represent numbers we
also often need to represent other things. The most common other use is to
represent text. This use of bit patterns predates computers. Some of the first
binary codes, Morse Code (using dot and dash as its two symbols) and the
Baudot telegraph code, were designed specifically to represent text. They
adopted the obvious scheme of assigning a bit pattern to each letter of the
Roman alphabet and to each number digit and punctuation symbol that they
thought useful. Neither of these codes is well suited for modern computer
use and over time a number of other schemes were adopted. Once there were
enough computers in the world for anyone to care whether you could move
information from one to another, it became obvious that some standard code
was needed. The one that has come to into nearly universal use is called the
American Standard Code for Information Interchange (ASCII).

1.5.1 ASCII Character Code

The ASCII code is basically a 7-bit code so that every character appears
as a positive integer in an 8-bit representation. ASCII includes the decimal
digits, the lower and upper case English letters, and almost all the common
punctuation and special symbols used in English. It also includes an extensive
set of non-printable characters that were intended to provide fine control
over the process of sending data from one computer to another. Most of
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Because the ASCII code only uses
the first 128 of the possible 8-bit
numbers, it has been extended to
256 codes by various different com-
puter makers and program designers.
Unfortunately, there is nothing stan-
dard about these extensions. For
example, both the Windows world
and the Macintosh world define full
sets of 256 codes. However, the Win-
dows world uses most of the extra
characters for special symbols used
to draw boxes on text-only screens
(not very useful these days!), while
the Macintosh uses most of them for
accented letters and other letters not
found in the English alphabet.

those control characters have fallen into disuse but a few, such as carriage
return, are still very important. Table 1.5 is a complete table of the ASCII
character codes.

Second Hex Digit
0 1 2 3 4 5 6 7

F 0 NULL DLE SP 0 @ P ` p
i 1 SOH DC1 ! 1 A Q a q
r 2 STX DC2 " 2 B R b r
s 3 ETX DC3 # 3 C S c s
t 4 EOQ DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u
H 6 SOH SYN & 6 F V f v
e 7 BELL ETB ’ 7 G W g w
x 8 BS CAN ( 8 H X h x

9 HT EM ) 9 I Y i y
D A LF SUB : J Z j z
i B VT ESC + ; K [ k {
g C FF FS , < L a |
i D CR GS - = M ] m }
t E SO RS . > N ^ n ~
. F SI US / ? O _ o DEL

Table 1.5: ASCII Character Code

The table is organized according to the hex representation of the bit pattern
for each character. Each character is associated with a unique 7-bit pattern
shown as a hex number between 0x00 and 0x7F. The table is laid out in
columns under the first digit of the hex number. All the characters in the
first column have code between 0x00 and 0x0F, all those in the second
column codes between 0x10 and 0x1F, and so on. Within each column the
characters are ordered by increasing second digit.

To find the ASCII code for any character

1. Find the character in the table and then
2. Get first hex digit from the number at the top of the column.
3. Get second hex digit from the number at the left of the row.

Example 1.5.1
The letter ‘H’ is the column headed 4 and in the row labeled 8. Thus its ASCII code is 0x48.

Similarly, you can find the character corresponding to any ASCII code by
using the first hex digit to select a column and the second to select a row.
The character whose code you have used lies at the intersection of row and
column.
Example 1.5.2
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The code 0x6E takes us to the last column but one, where the first half of the lower case alphabet
lives, and to the last row but one. The character in that place is ‘n’. Thus, ‘n’ is the character
with ASCII code 0x6E.

Several nice things about the ASCII codes are worth remembering.

• First all the numerals are in order and have codes that begin 0x3 so
we can turn a single digit number into its ASCII character by adding
0x30 or turn the character into a number by subtracting 0x30.

• Second all the alphabetic characters are in order in two groups. The
capitals all begin with hex 0x4 and the lower case all begin with 0x60.
This means that you can change the case just by adding 0x20 to or
subtracting 0x20 from the code for a number.

• Lastly, the characters with codes less than 0x20 are reserved for non-
printing characters designed to alter the flow of text in some way.
Many are now obsolete but a few are still current, including:

– 0x00 emphNULL used to end strings

– 0x07 emphBEL sounds an audible warning on some systems

– 0x08 emphBS Backspace, a favorite of poor typists like me!

– 0x09 emphHT the tab character (Horizontal Tab)

– 0x0A emphLF Line Feed, moves the pointer down one row

– 0x0B emphVT Vertical Tab, rare vertical version of tab

– 0x0C emphFF Form Feed, starts a new page

– 0x0D emphCR Carriage Return, returns pointer to start of line

– 0x1B emphESC Escape, used for various special purposes

– 0x7F DEL Delete, deletes the next character

1.6 Summary

Everything in a computer is stored as patterns of bits, binary digits. Bits
are usually grouped into 8-bit bytes and their multiples. We represent these
bit patterns either as strings of 1’s and 0’s or as hexadecimal numbers.

We can convert a positive decimal number into a binary number by repeatedly
dividing by 2. The remainders form the bits of the binary number. The first
remainder is the Least Significant (rightmost) bit and the last remainder
the Most Significant (leftmost) bit.

We convert a number from binary to decimal by adding up the powers of
two represented by the 1 bits in the number. The left most bit corresponds
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Dec Bin 8-Bit Bin Hex Dec Bin 8-Bit Bin Hex
0 0 00000000 0 10 1010 00001010 A
1 0 00000001 1 11 1011 00001011 B
2 0 00000010 2 12 1100 00001100 C
3 0 00000011 3 13 1101 00001101 D
4 0 00000100 4 14 1110 00001110 E
5 0 00000101 5 15 1111 00001111 F
6 0 00000110 6 16 10000 00010000 10
7 0 00000111 7 17 10001 00010001 11
8 0 00001000 8 18 10010 00010010 12
9 0 00001001 9 19 10011 00010011 13

to 20 = 1, the next bit to the number of 2’s, the next to the number of 4’s
and so. Thus the number 0b11000101 = 197.

Negative numbers are represented in two’s complement notation. In this
notation the number of bits in the representation is fixed and the top bit of
the number determines the sign, 1 for negative and 0 for positive.

You convert a binary number from negative to positive or vice versa by

1. Write the number out in binary with all bits present, including leading
zeros.

2. Invert every bit (that is, replace all 1’s with 0’s and all 0’s with 1’s).
3. Add 1 to the number. The result is the two’s complement of the

original number.

When we use the counting sequence encoding for numbers we can do arith-
metic on binary numbers in much the same way that we work with decimal
numbers.

English text can be represented by bit patterns using the ASCII code.

Exercises

NOTE all of these exercises are to be worked by hand without using a
hexadecimal calculator.

1. Convert 115 to an 8-bit binary number.

2. Convert 23,496 to a 16-bit binary number and to a 4-digit hex number.

3. Convert -17 to an 8-bit binary number.

4. Add binary 115 to binary -17 giving the answer as an 8-bit binary
number.

5. Multiply 0b01101010 times 0b01011101.



1.6. SUMMARY 19

6. Divide, using unsigned arithmetic, 0b1101 into 0b10110110 giving
answer as an 8-bit quotient and 8-bit remainder.
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Figure 2.1:
A Generic Computer

Chapter 2

Introduction to
Microcomputers

2.1 Introduction

All computers, from the largest mainframes to the smallest embedded devices,
share a common structure and scheme of operation. We shall explore those
common ideas in this chapter and illustrate them with examples from the
TM4C computer family discussed in more detail later in this text.

We start with an exploration of the hardware structure of a computer and
a look at how computers connect to the real world. Then we take a very
brief look at a simple program for an Texas Instruments (TI) TM4C123G
computer using the Energia programming system. The form of the language
that we will use is essentially that used by the Arduino family of computers
that has become extremely popular in the last few years. Actual Arduinos
range from small systems such as Uno to highly capable ones like the Due
based on the same ARM architecture that we shall be using.

2.1.1 The building blocks.

Every computer can be viewed as being built from a set of common building
blocks (Figure 2.1). At the core of every computer is the Central Processor
Unit, or CPU–the brain of the computer. By itself it is a blind, deaf, and
amnesiac. It needs one or more Memories to store both the information
that describes the state of a program and the information that describes the
program itself. It also needs one or more Interfaces to the world. All this
then provides the framework upon which the Program runs. The program is
the set of instructions that tell the computer what sequence of operations
to perform. It is this ability for a single set of hardware to perform many
different functions depending on the program that is responsible for the

21
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Figure 2.2:
A Desktop Computer

Figure 2.3:
Electronic Thermostat

success of the computer. A generic piece of hardware can now be turned to
almost any function simply by altering the program.

In operation, the CPU reads program instructions from the memory and
performs (executes) the operations those instructions describe; reading and
modifying the memory as required. As a result of the program, the central
processor communicates with the outside world over various interfaces. Those
interfaces can be as a single switch and a single light or they can be complex
devices to show pictures, store and retrieve large amounts of information,
understand speech, generate sound output, or accept handwritten input.

My previous desktop computer (Figure 2.2) is fairly typical It had a fast
64-bit central processor, a large amount of memory, and a lot of complex
interface equipment, including two graphical displays, a keyboard, track-
ball, several disk and DVD subsystems, a sound system, and support for
networks, printers, and a scanner. A desktop computer runs many different
user programs, word processors, spreadsheets, drawing programs, games,
etc., under the control of a massive and sophisticated program called the
operating system. These programs typically require gigabytes of memory
and may cost hundreds of dollars. During normal operation the computer
may change which program is in use many times, switching between an email
program, a word processor, or a web browser and so forth.

By contrast, many embedded systems have only a few bytes of working
memory and few hundred bytes of program memory. Such a system has a
small slow processor and fairly simple interface equipment; a few lines of
digital input and output, a serial port, and maybe some analogue input. A
common example would be an electronic thermostat (Figure 2.3). This is
the sort of task for which an Arduino-style system would be appropriate.

This is not to say that all embedded systems look like this. At the other end
of the range there are machines such as laser printers and automobile engine
controllers that have embedded computers as powerful as many desktop
machines. A laser printer controller might use a processor as fast and power-
hungry as a desktop system, have many megabytes of memory, and even
have a local hard disk to store font information. It is still an embedded
device because it looks like a printer not a computer.

Somewhere between these two extremes there are the mobile devices that
are becoming so much a part of our lives. The cellphone has grown far
from its roots as a device for making telephone calls and has grown into the
smartphone. Today’s smartphones have similar speed, storage, as display
capabilities to desktop computers of a less than a decade ago. But instead
of posing as the universal computing devices that they really are, they
hide behind elegant interfaces that give us easy access to a limited range of
functions including communication, media, games, and simple office functions
such as calendar and note taking. Looking only a little into the future we
can see smartphones extending their functions beyond their cases as more
and more devices join the “internet of things”. Already fitness watches and
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Some terminology.
Microprocessor: a complete cen-
tral processor on a single chip. Such
a chip forms the heart of a com-
puter but needs external support
chips to build a complete system.
Microprocessors are found as the
key components in laptops, desk-
tops, and workstations, where they
are supported by external memory
and interface systems. Examples
include Intel’s Core processors and
Freescale’s PowerPC chips.
Microcomputer: a self-contained
computer on a chip. A microcom-
puter has not only the CPU but
also enough on-chip memory and in-
terface systems to build a complete
computer with no other chips. Mi-
crocomputers are found in embed-
ded systems from toasters, through
cell-phones and MP3 players, to
palm-top computers. Examples in-
clude NXP’s 9S08 family, the vener-
able Intel 8051 and its descendants,
and the currently popular ARM fam-
ily to which our TM4C123G be-
longs.

some home automation systems talk to smartphones and the trend will only
continue as embedded systems find their way into a wider and wider range
of niche markets. Most of these systems are based on various versions of the
ARM processor that is at the heart of our TM4C123G computer.

Block diagrams like Figure 2-2 and Figure 2-3 give us a broad idea of the
organization of a computer but they do not show the software: the programs
that the computer executes and that control everything that it does. Like
the interface to the world, the software varies enormously depending on the
task that the computer must perform.

An embedded computer may have a program that is only tens or hundreds
of bytes long or may have a program as large as a desktop machine. The
difference is that the program is built into the computer so that it cannot
be changed, or not easily. This program will probably have been written
specially for its task rather than bought.

2.2 The Central Processor Unit

The CPU, is the real brain of any computer. It reads the instructions from the
memory and performs the operations that they describe. Those operations
are very simple ones such as adding two numbers together, comparing two
numbers, and deciding which instruction to perform next. Later in this
book we shall look inside the CPU of our computers and investigate the
individual instructions that it understands. For the moment, however, we
will be content to see it as a little black box that can read our programs
and, one step at a time, do exactly what they say.

Because individual CPU instructions are very simple they can do very little
and it takes a very large number of them to do even simple tasks. The first
computers had to programmed by literally flipping switches and pushing
buttons to load long patterns of bits into the memories and then telling
the CPU where to start working. Very soon people developed programs
that could do the tedious parts of this. They created programs called
loaders that could read data, in the form of holes punched into pieces of
cardboard or strips of paper tape, into the memory and run them. They then
created programs called assemblers that read strings of words and numbers
representing a program and translated them into the actual patterns of
instruction bits. Finally, they designed new languages, new ways to express
programs that were easy for people to understand, and programs called
compilers that did the much more complicated translation from this new
high-level language to the machine language.

The first successful high-level language, FORTRAN, could calculate mathe-
matical expressions, make simple decisions, and jump from one line in the
program to any other line if needed. Decades of research by mathematicians
and physicists and, once they invented themselves, computer scientists have
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John Backus and his team at
IBM created FORTRAN (FORmula
TRANslator) in 1954 and released
it commercially in 1957. Since then
the language has undergone many
changes and re-designs but versions
of FORTRAN are still in use on
some of the largest, fastest com-
puters in todays world. It remains
an important language for scientific
programming.

How Big is a Byte
? 8 bits!
Over the years, computers have been
built with memory cell sizes rang-
ing from 1 bit up to at least 36 bits.
The larger the cell, the larger the
number of different bit patterns that
it can hold and so the more flex-
ible it is. At the same time, the
larger it is the more costly it is and
the more chance that we shall be
wasting some of the bits. Since the
1970’s most computers have settled
on a basic size of 1 byte = 8 bits,
as a good compromise size, espe-
cially since it is a power of 2 and
so fits very nicely into an addressing
scheme based on binary number.

led to the invention of dozens of different high-level languages, most targeted
at some particular niche such as scientific programming, systems program-
ming, web scripting, etc. Probably the most successful single language is C,
developed in the late 1970s at Bell Labs by Brian Kernighan and Dennis
Ritchie. It and its descendants, C++, C#, Java, and D, have proved useful
in almost all fields of computing. In particular, the basic C language is
particularly well suited for writing programs that work very closely with
the hardware, the kinds of programs that run embedded computers. In
particular, Arduino-compatible systems are supported by a very nice C++
development system so we shall start our exploration of programming with
C and its big cousin, C++.

2.3 The Memory

Memory lies at the heart of every device that we could call a computer. The
memory stores the information that the computer works with, whether that
information represents words on a page, images on a screen, temperatures in
a house, or the pressure in a nuclear reactor vessel. The memory also stores
the information that represents the program that the computer follows, the
instructions that it performs. At the lowest level the memory is made up
from individual flip-flop circuits each storing 1 bit of information. These
individual bits are grouped into multi-bit cells or bytes and those cells in
turn grouped into larger blocks.

At its simplest, we can think of a computer memory as a being like a set of
mailboxes. Each memory location has a unique number, its address, and
room to hold one item of information, its value. The amount of room in a
memory location, usually called one byte, is fixed in size by the designer
of the computer but both the value and the meaning of the contents are
entirely determined by the program that the computer is running and thus
by the person who wrote the program.

Figure 2.4: Memory Organization

Each memory location holds a binary bit pattern of fixed size, almost always
8 bits which can represent all sorts of things, e.g. a number, a letter, a set
of bits describing various binary conditions, or a machine instruction.

If a piece of information is too large to fit in one memory location then we
have to group several cells together and spread one piece of information
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across several cells. For example, the largest signed number that will fit
in one 8-bit byte is 127. If we want to store a larger number then we
have to use several cells. If we use two cells then we can store a 16-bit
number with its upper half in one cell and its lower half in another and we
can represent numbers up to 32,767. In principle, those two cells could be
located anywhere in the memory but in practice computers use adjacent
cells to hold the several parts of a larger object.

High level languages like C, Pascal, and Java hide the simple pile-of-boxes
view of the memory and impose a structure that is easier for humans to work
with. In this view the memory consists of named locations called variables
that represent quantities and concepts in the program. Depending on the
need a single variable might hold a single number, a string of letters, or a
whole matrix of numbers. When the high-level language works its magic it
maps these high-level concepts onto the simple array of bytes and takes care
of the mapping so that we never have to worry about what information is is
in which memory cell.

Memory units
We count the number of cells in a memory in units of bytes, kilobytes,
megabytes, and gigabytes, etc. For this special use the prefixes have slightly
different meanings. One kilometer is 1000 meters, 103 meters, but one
kilobyte is 1024 bytes, 210 bytes. Since memories are always addressed
using binary numbers, it makes much more sense to use a power of 2 as the
counting unit. Since 210 is so close to 103 the choice of power is easy. Here
then are the most common binary prefixes and their multipliers

1. 1 kilobyte = 1 KB = 1024 bytes
2. 1 megabyte = 1 MB = 1024 KB = 1,048,576 bytes

3. 1 gigabyte = 1 GB = 1024 MB = 1,073,741,824 bytes
4. 1 terabyte = 1 TB = 1024 GB = 1,099,511,627,776 bytes

2.4 The Interface to the World

All computers have memories organized in similar ways and all have CPUs
that perform the same sort of tasks, even if the programming model and the
details of the language differ from one processor to the next, but there is
enormous variation in the range of interfaces to the world. Different kinds
of computers have such different uses that there is no similarity between the
interface to the computer in a toaster and that to a desktop computer.

Desktop and laptop computers, machines designed to process information in
close cooperation with humans, have a fairly uniform set of interfaces that
make up most of our picture of a computer. Such a computer has a keyboard
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Figure 2.5: My Original Desk-
top

Figure 2.6: A Toaster

for the user to type on and a video display on which the computer shows
information. It has a hard disk subsystem so that the machine can store
large amounts of information even when the power is turned off and the
main memory is not working. It has a wired or wireless network connection
to share information with other computers, a mouse or its equivalent to
communicate visually, a DVD or USB port to load or save large amounts
of information, and a sound system capable of some sophisticated effects.
All of these interfaces, or peripherals (so called because they are attached
to edges, or periphery, of the computer) are there to store information and
communicate with the human users of that information.

Figure 2.5 is a block diagram of the desktop computer on which I began
writing this book. Since then I have upgraded several times and now have
two video displays and haven’t seen a floppy disk in years, but the rest is
pretty much the same. Notice that each of the peripheral blocks is a complex
piece of electronics. Indeed most of these peripherals have circuitry nearly
as complex as the computers they serve and many of them have their own
embedded computers!

By contrast, the computer in a toaster (Figure 2.6) has a minimal interface.
For output, it has a few power switches to turn the elements on an off and
control the pop-up mechanism and maybe a light or two to tell the user
what is going on. For input, it has a few buttons and a sliding or rotary
control to set how brown you like your toast. The buttons allow you to
make such epic choices as one slice or two, brown on both sides or only one,
and of course there is the ultimate button, the one you push down to start
the thing toasting. If it is a fancy toaster, then it may also have a sensor or
two to monitor the temperatures of the cooking areas. That way the toaster
can make the second and third slices exactly as brown as the first, even
though the toaster is already warmed up and the cooking time is shorter.
The toaster actually has more peripheral devices than the desktop computer
but now they are extremely simple; a switch, a light, or a sensor.

2.4.1 Simple interfaces

At its simplest, every interface between a computer and the world takes
the form of one or more electrical connections between the CPU and some
circuit in the outside world. These connections are brought out to pins
on the chip or board that constitutes the CPU. Such connections come in
classes, inputs and outputs, and two basic forms, digital connections and
analog connections. Any such pin that carries information between the
computer and the outside world can be described as an I/O pin, meaning
an Input/Output pin.

Connections are usually described from the point of view of the CPU. Thus
a connection is an Output if it carries a signal from inside the CPU out
to the world. A connection is an input if carries a signal from the outside
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The ARM family, like most mod-
ern microcomputers, use what
is called Memory-Mapped I/O.
This means that the special memory
locations that form the interface to
the outside world are mixed in with
the regular memory locations. This
means that ordinary memory read
and write operations are all that it
takes to perform I/O.
Older designs featured separate I/O
and memory spaces. They had sep-
arate wires to connect to I/O mem-
ory locations and to regular mem-
ory locations. This meant that the
I/O space didn’t steal from memory,
which was important when memory
space was scarce

world into the CPU. It is not uncommon to find connections that can be
used either way, sometimes as an input and sometimes as an output, but at
any point in time they must be one or the other.

Digital connections carry only single binary values between the computer
and the world. A binary output is a bin that the computer can set to one
of two voltages, high or low (usually a small positive voltage such as 5V or
3.3V for high and 0V for low). A binary input is one that tell the computer
whether something in the outside is high or low. It acts like a comparator,
giving a value of 1 if the external signal is above some test level and 0 if it
lies below. Single binary inputs can, for example, tell if a button is pushed
or not. Single binary outputs might control whether a light is on or off
at any instant in time. The TM4C123G chip, on which we focus, has 43
such digital connections, of which 35 are connected to the connectors on the
LaunchPad board that we use.

Analog connections are more powerful. They can exchange multi-bit numbers
with the world. An analog input converts a voltage on a pin to a number
proportional to the voltage using an analog-to-digital converter. For example,
ten of the TM4C123G pins can be converted, by software, from digital inputs
to analog inputs that can convert a voltage in the range 0-3.3V into a number
from 1 to 4096. An analog output does the reverse. It converts a number
inside the CPU into a voltage in the outside world using a digital-to-analog
converter. While analog inputs are a standard feature of almost all embedded
processors, analog outputs are still quite rare. It is far more common to want
to measure something in the outside than to need to output a controlled
voltage. The only common use for analog output is to generate sound and
then the task of conversion is often left to external DACs that connect to
the computer through digital connections.

2.4.2 The computer’s view of the interface

No matter what it looks like to the outside world, inside the computer every
device must appear to the CPU, and thus to the programmer, as set of
memory locations. The program can write bit patterns to these locations in
the usual way but then special hardware can interpret those bit patterns to
do something else. Similarly, the program can read from the locations and
get information about the state of the hardware rather than just getting
back the last value that it wrote there. Such special locations, called Special
Registers in the TI documentation, act a bit like the night safes that see on
some banks or the book drops in a library. One side opens to the world and
allows people to put things into the slot and the other side opens onto either
the bank or the library and allows staff to pick up the items.

The simplest kind of interface is the digital port or textbfGeneral textbfPur-
pose textbfInput textbfOutput (GPIO) port. This is is basically a memory
location connected to 8-wires, one wire per bit. Each wire has a well defined
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The Missing Pins
Port A pins 0 and 1 are used to
allow programs to talk to the PC in
a specially easy way. Port C pins 0-3
implement the debug interface that
we use to get our programs into the
chip. Port D pins 4 & 5 are brought
to a USB connection that we almost
never use. I have altered the boards
to make these available.

Why can’t we just
program in English?
English turns out to be far too com-
plex and subtle for a computer to
translate into an executable pro-
gram. Part of the problem is that
the language has a lot of ambigu-
ity that allows us to communicate
subtle shades of meaning while mak-
ing even simple sentences hard to
understand when taken out of their
context. The problem of getting a
computer to understand natural lan-
guage is a very hot research topic
but we are still a long way from a
robust solution. So far it is just a
lot easier to teach the people a sim-
plified language to talk to the com-
puter than it is to teach the com-
puter a real language to talk to us.

direction either from the computer to the outside world, textbfoutput, or
from the outside world to the computer, textbfinput. To the program it is
a single memory cell. To the hardware designer it is a set of 8 pins on the
computer chip. All of the I/O pins on the TM4C123G chips that we shall
use are grouped into such GPIO ports.

2.4.3 Digital ports on the TM4C123G

The TM4C123G chips have six such ports available. They are given simple
alphabetic names so we have Port A, Port B, Port C, Port D, Port E, and
port F. Internally, each consists of 8 individual connections that can be set
to operate as either inputs or outputs on a pin-by-pin basis. Externally,
not all of the connections have actual pins which is why there are only 43
connections in the six ports and then some of the pins are used internally on
the LaunchPad board so that only 35 pins are available for us to use. Only
Port B is complete. Ports E and F are incomplete on the chip and ports A,
C, and D have some pins used for special purposes on the LaunchPad.

We name the individual I/O pins by combining a port name with a bit
number. Thus the lowest order bit of port A is PA_0 and the highest order
pin is PA_7 but only PA_2 to PA_7 are available for use. Port B has all
eight pins PB0 to PB7 available. Port C has pins PC_0 to PC_3 used for
the debug interface while PC_4, PC_5, PC_6, and PC_7 are available.
Port D is missing PD_4 and PD_5. Port E has PE0 to PE5 and Port F
has only PF_0 to PF_4.

2.5 A very brief introduction to C

High-level languages like C++ combine mathematical expressions with
simple one-word commands taken from English to produce programs that
are accessible to humans and yet can be translated into something that a
computer can understand. C++ is a member of a family of languages known
as procedural languages. A program in a procedural language is rather like
a recipe, a set of step-by-step instructions that, if followed in sequence, take
you through a process. At each step the program tells the computer what
to do. In fact there are a number of similarities between a cookbook and a
C++ program.

After some preliminary material, the main bulk of a cookbook consists of one
or more recipes, each a more-or-less independent unit. Similarly, after some
preliminary material, a C program consists of a one or more procedures.
An ordinary C++ program has one extra rule. For it to be a complete
program there must be exactly one procedure called main in the file. Once
the program has been compiled the computer starts running it at the start of
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/*
* A simple Energia
* program to blink an
* LED connected to PF1
* of a TM4C123G.
* Brian Collett
*/
void setup() {
pinMode(PF_1,OUTPUT);
}
void loop() {
digitalWrite(PF_1,HIGH);
delay(200);
digitalWrite(PF_1,LOW);
delay(200);
}

Figure 2.7:
Our First Program

the main procedure. That is why it is called main. The simplest C program
consists only of a main procedure.

Each recipe in the cookbook has a name by which you can refer to one recipe
in another. For example, my favorite English cookbook has a recipe for a
basic kind of cake called a Victoria Sandwich. It also has a number of more
involved recipes that use a Victoria Sandwich at some point. These other
recipes don’t have to repeat all the information in the basic recipe, they just
tell you to make a Victoria Sandwich and tell you how much flour to use.
Similarly, we could write a simple C procedure to, e.g., write a number on
an LCD and then, every time we wanted to write a number on the screen
just tell the computer to use the number program and tell it which number
to write.

Procedures, subroutines, & functions.

A procedure is any self-contained collection of code that can be run as a
single unit.

If the procedure returns one or more values to the caller then is called a
function, by analogy with a function in mathematics. If it does not return
anything then it is a subroutine.
Example 2.5.1 For example, a piece of code that computes the trigonometric sine of
a number would have to be a function to return the value of sine. A piece of code that writes a
number to a screen can be a subroutine since it does not need to return anything.

Either kind of procedure can receive information from a calling program in
the form of arguments. For example our sine function would need to be
passed an angle as its argument and would return the sine of that angle as
its result.

In the same way that a recipe begins with a list of ingredients, a C procedure
begins with a list of the variables that the program uses. This analogy goes
a little further. An ingredients list tells you how much of each ingredient to
use. The C list tells you how much memory each variable needs and also
what kind of items you can put into it.

2.5.1 Anatomy of a simple Arduino/Energia program

The actual Arduino family of computers use a slightly modified version of
the C++ language along with a custom library to create an easy-to-use
environment for writing Arduino programs that are called sketches. The
Energia system that we are using copies this system very closely.

Probably the best way to get started is by examining a simple program and
trying to understand the pieces and their relationships. Figure 2-7 shows
our first little program. This piece of text would be stored in a file with a
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“.ino” extension and translated by the Energia system into the machine code
that the CPU understands. We’ll work our way through it one piece at a
time.

/*
* A simple Energia program to blink an LED connected
* to PF1 of a TM4C123G.
* Brian Collett
*/

These first few lines, beginning with /* and going as far as */ form a
comment. This is not actually part of the program and it does not get
sent to the computer. As soon as the compiler sees the character pair /* it
starts throwing everything away until it sees a */. That ends the comment
and the compiler goes back to its usual state. Note that the *’s that begin
the middle lines are pure decoration. I like to put them into a comment
block like this because it makes it easier to see that these lines are part of a
multi-line comment. However, they are not required. Note also that while
this comment runs over several complete lines, a comment can be as short
as you like. Indeed /**/ is a perfectly legal, if rather useless, comment.

A comment is a way for the programmer who wrote the program to leave
useful information for anyone who reads it. Every program should have at
least one comment, placed at the top of the file like this one. That comment
should tell a reader briefly what the program is for. The more complicated
the program, the longer and more detailed the comment should be. The idea
is that a reader should be able to understand what the program does simply
by reading the comment, though they would have to read the program to
know how it does it. It is also a very good idea to include the name of the
author in this header comment and a date can also be useful.

The next line is a blank line that does nothing. It is just put there to
separate the main routine from the preliminary stuff. You can put blank
lines in anywhere to improve the formatting of the code and its readability.

void setup() {

This line must be present in an Arduino/Energia program. It marks the
start of the required setup procedure and it has a lot of parts, all of which
are important.

void is a type declaration. Every object in C has a type associated with
it; a description of the amount of memory needed to hold the value and of
the kind of object that it holds, such as whether or not it is signed. A void
object has no value and takes no memory at all. In this case it tells us the
setup procedure does not return a value. That is, setup is a subroutine.

setup() tells us two things. The pair of parentheses (round brackets) tell
us that this defines a procedure. The word in front of them, setup, is then
defined to be the name of the procedure. As we have seen, a complete
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Energia program must contain a setup procedure and the computer will
execute this procedure as soon as the program starts. The parentheses
contain declarations of the arguments that the procedure expects. In this
case there are none.

The left curly bracket,{, is the start of the body of the procedure. The
body is a collection of valid lines of C code that ends with a closing curly
bracket, }. This is the set of lines of code that get run when you invoke the
procedure.

pinMode(PF_1,OUTPUT);

This is the first line that actually does something! In C terms this “calls
the function named pinMode” and “passes it the arguments PF_1 and
OUTPUT”. pinMode is a subroutine that the Arduino library provides to
extend the basic C/C++ language.

In this case the pinMode subroutine allows us to choose whether an I/O pin
shall behave as in input or as an output. This one tells the computer to
make port F pin 1 into an output pin.

The semicolon on the end of the line is very important. Every line of C
code must end in either a semicolon or a closing curly brace. The semicolon
tells the compiler that this is the end of a single complete piece of code, a
statement.

Then next line of code is the ending curly bracket for our loop subroutine.
The computer will execute all of the code between the opening and closing
brackets as a single unit.

}

We recognize the next two lines

void loop()
{

as the start of another subroutine. This is the second subroutine required
by the Arduino/Energia system. It makes up the main body of our code.
As soon as the computer has finished executing the setup() code it starts
in on loop(). It executes the code between the curly brackets (the body of
loop) and then goes back and does it again, and again, and again. It keeps
doing it until either the power is removed or another program is loaded into
the computer. This is known as an infinite loop.

digitalWrite(PF_1,HIGH);

This is another subroutine call. This time we call the subroutine named
digitalWrite. According to the documentation, it knows how to change
the state of a digital output pin. In this case we set port F pin 1 to the
HIGH state. If there is suitably connected LED on the pin then this will
light the LED.
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Why the delay?
Computers live on a very differ-
ent time-scale than people. The
TM4C123G has a clock that ticks
80 million times a second. It takes
less than 1 microsecond to turn an
LED on and about the same to turn
it off. Without the delay this pro-
gram would turn the LED on and
off about 500,000 times per second.
That is far too fast for us to see
the blink. By adding a delay we
can bring the program down to our
timescale.

I am still fighting TeX to force it
to put the indentations into code
fragments in sidebars!

Figure 2.8: ENIAC, one of the
world’s first computers.

ENIAC was built at the University
of Pennsylvania over a 2 year pe-
riod starting in 1944. It was first
used to solve a problem for the Man-
hattan project and then dismantled
and moved to the Army’s Aberdeen
Proving Ground in Maryland where
it was used to compute flight tables
for artillery shells. The machine op-
erated for a total of 80,223 hours
over the period 1948-1955. Some
portions are still operable and reside
in a museum back at the University
of Pennsylvania. A huge amount of
information on the system can be
found at http://ftp.arl.army.mil/
~mike/comphist/

delay(200);

This time we call the subroutine named delay, passing it the argument 200.
delay is a routine that simlpy does nothing for some number of milliseconds.
It causes the program to pause for 200mS, one fifth of a second.

digitalWrite(PF_1,LOW);
delay(200);

These are now easy. The first sets port F pin 1to the LOW state, turning
off the LED, and then the second waits a further 200mS.

Altogether, these last four lines makeup the body of the loop. They will be
executed repeatedly for ever so the LED connected to Port F pin 1 will turn
on for 200mS, then off for 200mS, turn on for 200mS, and so on for as long
as we leave the power on.

}

The closing brace, }, marks the end of the piece of code that began with the
most recent {, the body of the loop subroutine.

Note that I normally indent all the lines between the opening { and the this
closing }. This is not a part of the language, but it makes the program a lot
more readable. Every time I use an opening brace I increase the indentation
by one more tab and I decrease the indentation at every closing brace. This
way you can look at the shape of the program and see from the indentation
which lines are in which block of code.

2.6 A Short History of Computers

We owe our modern idea of a computer to the successful marriage between
wartime machines to compute artillery firing tables and electromechanical
calculators for business accounting. The first fruits of this marriage were
vacuum tube behemoths that required the continuous attendance of a team
of technicians just keep replacing the components that failed every day;
machines that used so much power that their waste heat could have warmed
a building.

The first digital computers built, machines such as Eckert and Mauchly’s
ENIAC and the code-breaking COLOSSUS, were programmed by rewiring
them. The sequence of operations was determined by the way the processor
units were connected together. In Figure 2.8 you can see the maze of
programming cords connecting the individual units around the left and back
walls. These were unplugged and plugged back in in different patterns to
alter the flow of operation and thus to program the computer.
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In 1945, John von Neumann at Princeton, along with Eckert and Mauchly,
proposed that the program could itself be represented by codes stored in
the computer memory and so the machine could be reprogrammed merely
by altering the contents of the memory. Cambridge University’s EDSAC
machine, built in 1949, was probably the first machine to operate as a stored
program machine, though ENIAC was similarly modified soon after.

Since EDVAC, almost all computers have had a “von Neumann architecture”
with a single memory used to store both the program and the data. The
alternative is a design pioneered at Harvard that uses two separate memories,
one for the program and one for the data. The enormous cost of memory
in the early days meant that the von Neumann architecture became the
standard design for computers. More recently, the Harvard architecture,
with its two separate memories, has been revived for some processors, in
particular very small single-chip computers and the ultra-fast specialized
digital signal processors.

With the advent of the transistor in the late 1940’s, their size and power
consumption shrank and the reliability increased so that, by the late 1950’s,
computer models ceased to be made in ones and twos and were made in tens
or hundreds. These are the machines of the science fiction movie, with their
air-conditioned rooms, rows of flashing lights, and racks of merrily spinning
tape drives.

Figure 2.9: IBM7090, The First Commercially Successful Computer

The IBM 7090 was a simple rebuilding of the vacuum tube model 709 using
transistors. The resulting computer occupied a fraction of the space and ran 5
times as fast. Following its introduction in 1959 it became the first computer
to sell in significant numbers, more than 300 over a 6 year period. They were
used by businesses, by the military, and by NASA, during the Mercury and
Gemini programs. The last 7090s were retired by the Air Force in the 1980s!
Lots more information can be found at http://www.frobenius.com/7090.htm.
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Figure 2.10: DEC PDP-1

Figure 2.11: First 4004
chips in original
prototype calculator

The 1970’s saw a split between these room sized mainframes, with their
staffs of attendant high priests, and the much smaller minicomputers that
filled only one or two relay racks and were operated by their users. This
signaled a vast change from the massive mainframes, locked away in special
sanctuaries tended by a high-priesthood of operators who interceded between
the actual machines and their users. Suddenly, instead of a computer being
something huge and mysterious that lived behind windows and counters,
the computer emerged into the office and, especially, the laboratory and the
user became the operator.

Figure 2.10 shows a view of of the DEC PDP-1, one of the first minicomputers
to enter the market. It has a single small panel of switches and lights (just
above the chair) and has a modified electric typewriter for input and output
(on the table to the left).

DEC and the PDP Computers
The Digital Electronics Corporation, usually known as DEC, introduced its PDP-1
in 1960. It began a line of PDP computes that would dominate mid-scale computing
for more than 2 decades. Here is a quote from the original manual.

The Programmed Data Processor (PDP-1) is a high speed, solid
state digital computer designed to operate with many types of input-
output devices with no internal machine changes. It is a single address,
single instruction, stored program computer with powerful program
features. Five-megacycle circuits, a magnetic core memory and fully
parallel processing make possible a computation rate of 100,000 addi-
tions per second. The PDP-1 is unusually versatile. It is easy to install,
operate and maintain. Conventional 110-volt power is used, neither
air conditioning nor floor reinforcement is necessary, and preventive
maintenance is provided for by built-in marginal checking circuits.

More information, including the manual, can be found at http://www.dbit.com/~greeng3/pdp1/.

DEC prospered as a company throughout the 1980s but faltered as desktop
computers grew in power and the niche for the mini-computer grew smaller
and smaller. The company was bought by Compaq in 1998 and then merged
into Hewlatt Packard in 2002.

At about the same time the newly formed Intel corporation was working on
a design for components to build an electronic calculator that would lead, in
1971, to the first microprocessor, the Intel 4004. This was a set of four chips
that together made up a complete, but very limited, computer.

The new idea of a microprocessor caught on quickly. Intel followed the
4004 with an 8-bit version, the 8008 and then an improved, single-chip 8-bit
version called the 8080. The 8080 was such a success that it really spawned
the microcomputer age. A number of engineers left Intel and founded Zilog
to make the Z-80, an improved 8080 and small firms started to make whole
computers based on these new chips. One such computer was the MITS
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ALTAIR, for which an unknown Harvard student called Bill Gates wrote
his first software. The other big semiconductor firms joined in as well with
Motorola developing the 6800, the direct ancestor of the chips we use in this
course, and RCA developing the first low power microprocessor, the 1802.

Round such microprocessors grew up a new type of computer, the desktop
computer. This was first made successful by Apple, using the 6502 derivative
of Motorola’s 6800. Then around 1980 IBMmoved in with the IBM PC, based
on Intel’s new 8088 microprocessor, a 16-bit enlargement of the venerable
8080. These small machines grew in speed and power and fell in size and
cost until today we have laptop computers with more computing power than
the mainframes of the 1970’s.

At the same time that general-purpose computers were growing smaller,
faster, and far more numerous, a much less visible class of computers was
emerging. Unlike their better-known cousins, these hidden computers did
not run accounting systems or word processors, keep track of appointments,
or draw plans for new buildings. Instead of being flexible, human oriented
tools with a very distinct personality of their own, these computers were just
components in some other piece of equipment. Jobs that had been performed
by simple mechanical or electromechanical controllers, such as thermostats,
timers, engine control systems, and telephone switching systems, came more
and more to be performed by stripped down computers. These hidden
computers became called embedded systems or embedded computers because
the computer is embedded inside some other mechanism and does not expose
its nature to the world.

At first, these embedded computers were extraordinarily expensive master-
pieces of miniaturization each designed for a special high-tech task such as
missile navigation or space-flight control. The advent of the microprocessor
changed that. Within a few years of the first microprocessor, manufacturers
such as Intel, Motorola, and Texas Instruments were producing devices
tailored not to making desktop computers but to doing small control tasks;
the embedded microprocessor was born. It has been fantastically successful.
Today almost all the computers in the world are embedded in something
else. Despite the vast growth in the numbers of general purpose computers,
they comprise only a small fraction of all the computers being sold. The rest
are hiding inside TV’s and VCR’s, inside remote controls and programmable
thermostats, inside laser printers and cellular phones, inside toasters and car
engines. They range from unbelievably tiny and powerless devices, fitting in
an 8 pin package and boasting only 32 bytes of RAM, to systems that rival
desktops with clock speeds in the GHz range and vast memories.
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2.7 Summary

A computer consists of a Central Processor Unit that does the work, a
Memory that stores the instructions and data for the CPU, and an Interface
to the outside world.

The interface consists of I/O pins that can be Inputs from the world to the
CPU or Outputs from the CPU to the world.

A digital I/O pin can only be in one of two states, HIGH or LOW. An output
pin goes to a high voltage (5V or 3.3V) if set HIGH and to ground if set
LOW. An input appears to the computer as 0 (LOW) if the input voltage is
less than about 1V and as 1 (HIGH) if the input voltage is greater.

An analog I/O pin can take a large number of states.

A comment in C is a string that is completely ignored by the compiler.
It is there to make the program easier for humans to read. C treats all
text enclosed in /* and */ delimiters as a comment. Similarly, // starts a
comment that runs to the end of the current line.

pinMode(<pin>,<state>) tells the computer to make <pin> into an input
or output depending on the value of <state>, which must be INPUT or
OUTPUT.

digitalWrite(<pin>,<value>) sets the state of <pin> to either HIGH or
LOW depending on the <value>.

delay(<number>) causes the program to pause for <number> milliseconds.

All Arduino programs or Sketches must contain two subroutines

void setup() {
// Code here will be executed once at the start
}

and

void loop()
{
// Main code goes here and we be run repeatedly
}

The code in setup will be executed once at the start of the program and
then the code within loop will be executed repeatedly until the power is
turned off.



Portmanteau
A portmanteau is really a suitcase.
The idea is that it is a case that con-
tains a large number of individual
clothes. Here we use it to mean a
word that contains several different
meanings.
The reference is to Humpty Dumpty
in Lewis Carrol’s Alice Through the
Looking Glass in the section where
Humpty is explaining the poem
Jaberwocky.

Chapter 3

Programming the TM4C123
with Energia

3.1 Introduction

Texas Instruments, the company that produces the TM4C microcomputers
featured in this book, produces a suite of programming tools for them called
CodeComposer. Later in the semester we will meet CodeComposer and see
some of the fancy things that it can do for us. To begin with, however, we
will use a much simpler development environment called Energia, that is a
recreation of the popular Arduino programming environment adapted to the
ARM computers that we use.

Like Arduino, Energia is a sort of portmanteau term, as Humpty Dumpty
would say. It refers both to the programming environment that we shall be
using and to the set of libraries that it uses to abstract away many of the
details of the particular hardware that we shall be using. I shall be talking
about both meanings. There are large amounts of additional information
available on both the Energia website, www.energia.nu and on the original
Arduino website, www.arduino.org.

This document introduces Energia and provides a short tutorial to get you
started writing programs for the TM4C. I will present an example based on
the LaunchPad system used for much of this book.

This document is meant to serve as a tutorial introduction to Energia. I
have also included some more detailed information but I have set it off in
boxes that you can skim over at a first reading but should come back and
re-read once you have built and tried out your first one or two programs.

Before we start the tutorial I want to introduce a few terms.

Host
The desktop computer that runs the development software to create and
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debug a program. It transfers the final program to the actual TM4C chip
and communicates with it to allow you to debug the program, controlling
the progress through the program and viewing the internal state of the chip
as the program runs. This is a full-fledged desktop computer with thousands
of times the resources of the TM4C chip that we are actually talking to. Its
job is to make our life easier!

Target
The actual TM4C computer chip. It talks to the host over a debugging
interface built into the LauchPad board. This chip does all the actual work
of running a program.

Source code
The human readable form of the instructions that make up a program. This
same term is used for assembler source and for programs written in a high-
level language. We shall be working with source code in the Arduino version
of the C++ language. A complete Arduino/Energia program is called a
Sketch and is stored in files with a .ino extension.

Object code/ Machine code
The machine readable form of the instructions and data that make up a
program. This is a long list of binary (often displayed as hex) numbers that
make up the actual instructions that the CPU reads form memory as it runs
the program. machine code is stored in files you rarely see whose names end
in .o.

Executable
The complete machine code for an entire program. This is the thing that
gets sent to the chip and which runs on the target. It may be the result of
gluing together object code from several different source files. This is actually
stored in two different files. The raw code for the chip is in a file that ends
.cpp.bin. It is a vaguely human-readable string of hex numbers. There is
also a .cpp.elf file that contains the code plus a lot of extra information
that the debugging system uses to find things in the running code. You may
see these names show up in the output pane of Energia.

Assembler
Either the human readable language used to represent a program or the
PC application that translates assembler source into object code. This is a
straightforward 1-1 translation. One line of assembler results in one or fewer
machine instructions. Some lines are comments for human eyes and others
are commands to the assembler.

Compiler
The PC program that translates human readable C++ code into object code
(or sometimes into assembler code that is then fed to the assembler and thus
turned into object code. Since this process is transparent to the user we
don’t usually care which happens.). C++ is a general purpose language, not
tied to the actual instructions of the particular CPU. Thus one line of C++
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usually results in more than one machine instruction. Some lines of C++
may, indeed, require hundreds of machine instructions to implement. This is
why we call C++ a high-level language.

Linker
The PC program that takes a set of object code files and glues them all
together into a single executable. The linker allows us to split complex
programs across several source files. This is particularly useful once we have
written a number of programs because it makes it easy to re-use code from
one program in another.

IDE
An Integrated Development Environment is whole package of applications
to write and debug programs all gathered together under a single umbrella
application, the IDE. This is the thing that we start by double-clicking the
Energia icon. Within the IDE, Energia includes an editor for preparing the
code, the compiler itself, an assembler, various utilities, and the all important
uploader that transfers our code to the target processor ans sets it running.

3.2 Getting Started

The best way to start to learn a complex system like Energia is to do
something with it. So we will start by developing a simple program to blink
an LED on and off. The LaunchPad board that we use has a rather nice
(and very bright) three colour LED included on the board. We will try to
make one of the LED blink steadily.

3.2.1 Meet Energia

You can start Energia either by double-clicking the shortcut icon on the
Desktop. First a splash screen appears, followed shortly by a window
something like Figure 3.1, on the next page. This is a rather simple window.
There are two main panes, distinguished by their background colors. The
upper pane, with the white background, is the editor. Here you see, and can
alter, the text version of your program; its source code. Above the editor
pane are a tab-bar with a light red background, a toolbar with a dark red
background, and the menu bar with five menus, File, Edit, Sketch, Tools,
and Help. Below the editor, separated from it by an empty tab-bar with a
light red background, is the message pane, which has a black background.
You can’t type in this pane. Instead, Energia will post messages about your
code and the process of sending to the target board.
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Figure 3.1: Energia starts up

Energia normally opens onto the
most recent sketch. If it has not
been run before then you get this
empty sketch.
You can always get a new empty
sketch either by selecting New from
the File menu or by pushing the New
button in the toolbar. That is the
button that looks like a sheet of pa-
per with the corner turned over.

3.2.2 Making the code our own

This template does nothing at all. It is a perfectly valid program that makes
the computer sit there doing precisely nothing as fast as it possibly can, for
as long as the power is applied. We want to modify this program so that
the computer will blink an LED attached to pin 1 of port F. As we will see
later, there are two different ways that an LED can be connected. One way.
that was historically common, turns on the LED when the bit is 0 and off
when the bit is 1. Most people find that a little weird so we will assume the
more modern 1 (HIGH) to turn on and 0 (LOW) to turn off.

Our code needs to perform two separate kinds of operation. There is some
stuff that needs to be done only once, at the start of the program. In our
case, it needs to set up bit 1 of Port F as an output. Then there is the main
task that runs a loop that forever. In our case, we need to turn the bit on
and off.

As we learned in section 2.5.2, there is a special pinMode subroutine that
takes care of this for us. All we need do is tell it which pin we want (PF_1)
and that we want an output and not an input.

pinMode(PF_1, OUTPUT);

We put the cursor on the blank body line of the setup() routine and type
this in. Remember that every complete statement, essentially every line of
code, must end in a semicolon (unless it is just a line with a } on it).

Next we need to write 1’s and 0s to bit 6 in the data register itself. The
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Because each statement ends with
a semicolon C allows you to write
several statements on one line. I
consider it poor style as it tends to
obscure the simple top-to-bottom
flow of a program.

StarWars memory of the day:
Owen Lars: “What I really need is
a droid that understands the binary
language of moisture vaporators.”
C-3PO: “Vaporators? Sir, my
first job was programming binary
loadlifters—very similar to your va-
porators in most respects.”
Only the binary language part is
real, I am afraid.

digitalWrite subroutine allows us to control the state of any output pin. We
can turn the LED on with the line

digitalWrite(PF_1,HIGH);

and then off again with the line

digitalWrite(PF_1,HIGH);

If we put these two lines in the body of the loop() subroutine, the computer
will turn the bit off, turn it on, then go back to the start of the loop and
repeat, turning the bit on and off forever.

At this point you should have a sketch that looks something like this.

/*
* Blink.c
* A program to blink on and off an LED attached to
* Port F pin 1 of the LaunchPad board.
* Brian Collett, 1/25/16
*/
void setup()
{

pinMode(PF_1,OUTPUT);
}

void loop()
{

digitalWrite(PF_1,HIGH);
digitalWrite(PF_1,LOW);

}

Now we have a program that blinks an LED but is in a file that is still called
something like sketch_Nov05a. You can change the name when you save the
new program to the computer.Either go to the file menu and select the Save
As. . . . option or press the Save button, the one that looks like a down
arrow. Either will bring up a file save dialog where you can choose a new
name for the program. I called mine Blink and Energia saves the program
as a file Blink.ino in a directory called Blink..

If you did all this correctly, you should now have your first Energia program.

3.2.3 Verify and Upload

The code you have written so far is a piece of human readable text in the
Energia/Arduino dialect of the language called C++. Before it can be sent
to the TM4C123 to be run, it must be converted from text into the binary
machine language that the TM4C123 speaks. This is a rather complicated
process but Energia takes care of all the work. All you have to do is to press
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Well, I fixed a typo, since the actual
documentation says “miliseconds”,
and I trimmed out a reference to an
alternate way of pausing.

If you want to be precise, then the
parameter is the variable that ap-
pears in the code for the subroutine.
The argument is the value that is
given at the point where the sub-
routine is called. We are often not
careful about this difference.

either the Verify button on the toolbar–the one with the big check mark–or
the Upload button–the one with the right arrow icon.

Verify
As the name implies, this button verifies that the code that you have entered
is valid C++ and roughly makes sense. When you press this button Energia
goes through a series of steps to convert your text program into an executable
form and prints the commands and their results to the black Message pane.
You are welcome to scroll through and see the work that goes into turning
these few lines of text into executable code. You will know that all is well
when the last couple of lines are something like

Binary sketch size: 2,424 bytes (of a 262,144 byte maximum)

Upload
This button is the one that you will use most often. Like Verify, it goes
through the complex sequence of operations required to compile your code,
that is, to turn it into executable code. Once the code has compiled success-
fully, Upload tranfers the executable version from the PC to the LaunchPad,
using the USB cable that joins them, and then sets the code running.

Press the Upload button and watch the progress of the program and the
behavior of the LED. Interestingly, the LED does indeed light up, but it
does not go out. Instead of a blinking LED we have an always on LED. So
we have a program that is correct in the sense that it compiles but incorrect
in that it does not do the right thing. We call this a run-time error.

At the moment this is a bit of a mystery (unless you remember Chapter 2).
We can learn more if we look at the signal on pin PF_1 with an oscilloscope.
It is then clear that the problem with the program is that it turns the LED on
and off too fast. With single instructions taking a fraction of a microsecond,
our program is turning the LED on and off more than 1,000,000 times per
second. No wonder we can’t see it blink!

3.3 Slowing Down the Blinking

While there may be times when we would be very happy to generate a output
that turns on and off more than 1 million times per second, this is not one
of them. The human eye cannot see a light that blinks faster than about
20-30 times per second. This means that we need to insert some wait time
into our program. As we learned in Chapter 2, the Wiring library provides
us with a command to waste time. The subroutine (remember that is just
a fancy word for a command) delay inserts a pause for some number of
milliseconds. Let’s look at what the documentation says about delay. Figure
3.2 shows a slightly edited version of the Energia documentation for delay.

There are two key ideas to talk about here. First is the idea of a parameter
or argument. These are different names for a way to pass information from
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delay()
Pauses the program for the amount of time (in milliseconds)
specified as parameter.
(There are 1000 milliseconds in a second.)
Syntax
delay(ms)
Parameters
ms: the number of milliseconds to pause (unsigned long)
Returns
nothing

Figure 3.2: Energia Documentation for delay

your program to the code inside the subroutine. Parameters are values that
are put into the parentheses that follow the name of the subroutine. So that
in the call

delay(1000);

the number 1000 is the single parameter that is passed down. A single
subroutine may have many parameters, separated by commas, but they
must match what the designer of the subroutine wants. In this case the
documentation tells us that there should be one parameter, referred to
by the name mS, and that it will be treated as an unsigned long integer.
That means that we can pass in any number from 0 all the way to 232-1=
4,294,967,295. That is a lot of milliseconds, about 50 days worth!

In addition to parameters that carry information down from the main
program into the bowels of a subroutine, a subroutine may pass 1 piece of
information back as a result. There is nothing that delay needs to tell us so
it does not return a return a result; the documentation says that it returns
nothing. Operations that do return results are quite common. For example
there is a Wiring subroutine millis() that returns the number of milliseconds
that have elapsed since the computer started running. In general we call a
subroutine that returns a value a function.

3.3.1 Let it Blink

I said earlier that and LED that turns on and off faster than about 20 times
per second will be perceived as a steady light. If we want to see our LED
blink then we need to make sure that it turns on and off more slowly than
this. For example, we could get 1 blink per second if we turned the LED on
for 0.5 seconds and then turned it off for 0.5 seconds.

0.5 s is the same as 500 mS so we can wait for 0.5 s with a call of

delay(500);
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Adding two such delays to our program gives us

1. /*
2. * Blink.c
3. * A program to blink on and off an LED attached to
4. * Port F pin 1 of the LaunchPad board.
5. * Brian Collett, 1/25/16
6. */
7. void setup()
8. {
9. pinMode(PF_1,OUTPUT);
10. }
11. void loop()
12. {
13. digitalWrite(PF_1,HIGH);
14. delay(500);
15. digitalWrite(PF_1,LOW);
16. delay(500);
17. }

Change your code to match this program, press Upload, and you should be
rewarded with a blinking LED!

3.4 More Energia

So far we have looked carefully at two of the buttons on the Energia toolbar,
Verify and Upload. Let’s look at the rest of them. Here is the full toolbar.

Figure 3.3: Energia Toolbar

We recognize the left two icons as the Verify and Upload icons. The other
three are for working with files.

New This is the button with the icon of a sheet of paper. It opens a new
sketch and populates it with the default code. It is a common way to start
a new program. This is the same as clicking the New item on the File menu.
The new sketch is given a default name that will be made from the word
Sketch and a date.

Open This is the up-arrow icon and it presents you with a choice of all the
sketches that it knows about on the computer. You can then pick one and
it will open it in a new window and let you work on that sketch. This is the
same as File | Open. . . ; that is, the same as selecting the Open. . . item
from the File menu.
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Figure 3.4: PutTTYTel setup

Figure 3.5:
PutTTYTel first opens

Save This is the down arrow icon. It allows you to save your sketch to
the computer. If the sketch is a new one then it will let you change the
name to something more useful than Sketch_Jan16a. This is the same as
File|Save. . . .

3.5 Talk to me. Simple text I/O.

Blinking LEDs is all very well but it would be really nice if we could talk
to our microcomputers. Unlike their big desktop cousins, microcomputers
don’t have keyboards and screens to make communication easy. It would be
nice if the desktops could help out their little cousins, sort of lend them their
keyboards and screens. This is often not practical for a finished embedded
computer. After all, if it looks like a computer then it is not really an
embedded computer. But a keyboard and screen can be extremely powerful
tools during development and debugging. So Arduino/Energia provides tools
to let the microcomputer access the keyboard and screen of its desktop host.

3.5.1 PuttyTel

The key to this trick is a simple digital interconnection called a serial port.
As we shall see in more detail later (Chapter ??), a serial port uses two
signal wires and a ground wire to carry binary data between two computers.
Our LaunchPads have several such ports and our desktop PCs have one
(you can add more using USB if you have to). The first thing that we need
is a program to talk to the serial port on the PC. A good choice is a free
program called PuttyTel (http:/www.putty.org). This opens a window on
the PC screen and arranges that any keystroke typed into the window is
sent out the serial port and any characters that arrive through the serial
port are displayed on the screen.

When you first launch PuttyTel you will get a setup window that looks like
Figure 3.4.

I have circled the only bits that we care about. We start by clicking the
Serial button. This should make the program fill in COM1 in the left-hand
text box and the number 9600 in the right-hand text box. We will look at
these values a bit more later. For now just remember the 9600 and can start
the program by clicking the OPEN button. That should make the dialog
disappear and leave us with an empty black window, like this.

When this is the frontmost window, we can type on the PC keyboard and
know that every character is being sent out the serial port. If you try this
then you will find that nothing seems to happen; no characters appear in
the window. This is because there is nothing on the other end of the serial
connection. The only characters that appear in the window are ones that
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Figure 3.6: DB-9 Connector

are arrive over the serial port. Since there is nothing connected to the serial
port, nothing will arrive.

3.5.2 Making the Connection

Although our serial connection only uses three wires, most serial connections
are made using cables with 9-pin DB-9 connectors on their ends. They look
like Figure 3.6.

Each connector has an outer metal shell that also serves as a ground connec-
tion. One end has a series of 9 metal pins arranged in two rows. We call
this the male end. The other end has a black plastic block with 9 holes,
also arranged in two rows. This is the female end. Your desktop PC should
have a male DB-9 connector on the back and you need to connect plug the
female end of your cable in to that. It helps to tighten the locking screws so
that the plug won’t fall out.

Your LaunchPad does not have a DB-9 connector on it. Instead, you have
a little PC board with such connector on one side and 4 pins on the other
side. Connect this to the male end of the cable and plug the pins into the
breadboard so that the pin names on the computer match those on your
little adapter board. The result should look a bit like this.

Figure 3.7: Serial Adapter Board
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Even with everything turned on, this will still do nothing. We need a
program at the TM4C123G end to talk to its serial port.

3.5.3 A First Program

The standard C/C++ library provides a range of routines to handle text
input and output. On a desktop computer these routines would use the
window and keyboard of the computer on which the program was running.

Our little embedded processors do not have keyboards or displays so that
the ordinary C/C++ routines aren’t much use. Instead, Energia/Arduino
provides a set of routines that talk to the host PC over a serial port.
Our first simple program will make the serial connection and then send a
character to the PC. For this we shall need two routines, Serial.begin()
and Serial.write().

The first thing that we will need is

Serial.begin( <baudRate> );

This routine steals two pins from port A (PA_0 and PA_1) and converts
them into the two serial pins. It needs one extra piece of information, the
speed at which to send data, what is known as the Baud rate. Back when
we started PuttyTel we accepted the default speed of 9600 so we have to use
that same number now. So the first line of our program is

Serial.begin(9600);

Our program is going to be simplest possible. It will sit sending a single
’a’ character out the serial port. After the call to Serial.begin() the
Tiva is can send characters over the serial line to PuttyTel and receive
characters from it. We send a character out with the routine Serial.write(
<character> ), which must be passed the ASCII code for the character.
We looked at the ASCII code back in Chapter 1. There we found that
the binary code for the lower case letter ’a’ is 11000012. C allows us to
write numbers in any of the forms that we met in chapter 1, decimal (97),
hexadecimal (0x61), binary (0b01100001), but it also provides a special form
for ASCII characters. We can simply put the character in single quotes and
C will replace it by the correct ASCII code. Thus we can write our lower
case ’a’ with any of the lines

Serial.write('a');
Serial.write(97);
Serial.write(0x61);
Serial.write(0b01100001);

This gives us our first program.
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void setup(void) {
Serial.begin(9600);

}

void loop(void) {
Serial.write('a');

}

If you run this program then the PuttyTel window should start to fill up
with ’a’s. You can experiment with putting different values in the call to
Serial.write and seeing what letters they produce.

Writing strings|

It would be very tedious if we had to use one Serial.write() call for each let-
ter that we want to write so the Arduino provides Serial.print(<string>),
which sends an entire string of character in one call. As we shall shall see
later, this print command is quite powerful and can do a lot more than just
print simple strings, but this is where we start.

Strings in C are in general somewhat complicated and we shall learn a lot
more about them later (??ref??). Constant strings, however, are very easy.
Just as we can make a single character constant by surrounding a letter with
single quotes, so we can make a string constant by surrounding the string
with double quotes. Thus we have strings such as

"Hello"
"Hello, world!"
"How's it going?"

We can send these to the PC by passing them to ‘print‘, like these

Serial.print("Hello!");
Serial.print("Hello, Hello!\r\n");

The last of those is a bit weird. It has some extra stuff at the end. If you
cast your mind back to Chapter 1 you may remember that the first 32 ASCII
characters are not not printable symbols but represent directions to the
display to do fancy things. In particular the character with ASCII value
0x0D is a carriage return character while 0x0A is a linefeed. C provides a
way to put such special characters into string using special two-character
sequences called escape sequences such as these. '\r' is the ASCII value
0x0D that tells the display program to move the cursor back to the start
of the line. It is the carriage return sequence ('r' for return). '\n' is the
ASCII value 0x0A that moves the cursor down one line ('n' for newline).
If we want to move the cursor down to the start of the next line then we
need both of these special characters so it is very common to end a string
intended as output with the "\r\n" sequence.
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Arduino provides an alternative way to print a string and move onto the
next line. In addition to Serial.print(<string>) there is a second form
that prints the string and moves to the start of a new line. It is called
Serial.println(<string>). To demonstrate this version, here is the classic
first C program, HelloWorld. It opens a serial port and prints a string to
PuttyTel, moves to a new line, and then just sits doing nothing until you
turn it off.

void setup(void) {
//
// Put any one-time setup code here.
//
Serial.begin(9600);
Serial.println("Hello, world!");

}

void loop(void) {
//
// Code here runs in an infinite loop until
// something external stops it.
//

}

You may wish to experiment with different combinations of printable strings
and escape sequences and see what sorts of effect you can achieve.

3.5.4 Talking to ourselves

Serial.read

So far this has been a one-way conversation. The microcomputer can talk
to the PC but we can’t say anything back. It is time to meet Serial.read.
When you call this routine looks to see if a character has arrived from the
PC and returns its ASCII code if it has. Otherwise it returns the value -1,
which does not correspond to any ASCII character (it is an 8-bit value and
all the ASCII codes fit in 7 bits and so have the msb set to zero). This is
called a non-blocking read. It can be very useful in embedded programs
that rarely get characters and spend most of their time doing something
else.
Example 3.5.1
Consider of a traffic-light program. If the pedestrian button sent a character to the traffic light
controller then the controller could go about its business of keeping the lights changing on time
and would only need to process a button push when one was present.

Contrast this with the blocking read.It will not return to the caller until a
character is ready to be read. This would bring our traffic light program to
a complete halt. However, many kinds of program that interact with people
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want to spend most of their time waiting for the person to press some keys.
In that case a blocking read can be much more convenient.
Example 3.5.2
A simple calculator program is much easier to write with a blocking read. It wants to sit doing
nothing, waiting for the user to press buttons. Once the buttons have been pressed it performs a
calculation that takes it almost no time and goes back to waiting for input.

We need to find a way to provide a *non-blocking read* that will return
immediately if there isn’t a character so that the program can go on working
while it waits. Because Serial.read returns a unique value (-1) when there
is no character, it is pretty to make a blocking version. Here is a subroutine
that will do the trick.

char WaitForChar(void) {
char ch = Serial.read();
while(ch == -1) {

ch = Serial.read();
};
return ch

}

This keeps reading from the serial port until it gets a valid character. It is
infinitely patient and will keep trying until someone has pity on it and send
it a character.

A simple Echo program

As a demonstration, here is a program that will sit waiting for characters to
come from the PC and, every time it finds one, send it back. I am writing
this with the non-blocking read so we need to test each result from read
before we send it out. Otherwise we send a huge number of -1 characters (the
delete character) to the PC. Since the program needs to call read repeatedly,
we will put the code into the loop of our program. Our first try looks like
this.

void setup(void) {
//
// Put any one-time setup code here.
//
Serial.begin(9600);
Serial.println("Program echoes characters back to user.");

}

void loop(void) {
char ch = Serial.read();
if (ch != -1) {

Serial.write(ch);
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}
}

If you run this code with you LaunchPad connected to PuttyTel then you
should find that any key that you type on the keyboard will show up in the
window. You can check that this is due to your computer either by stopping
the program or by turning off the power to the LaunchPad.

A Command Driven Program

Now that we can read characters from the user, we can write programs that
change their behavior in response to typed commands. This will become
useful once we start to interface our computers to our robots. You can
imagine controlling a robot’s behavior by sending it commands such as the
letter ’f’ to move forward, the letter ’l’ to turn to the left, and so on. Here
is the outline of such a program.

void setup(void) {
//
// Put any one-time setup code here.
//
Serial.begin(9600);
Serial.println("Simple Robot Controller.");
Serial.println("Responds to single letter commands as follows:.");
Serial.println("f Move forward.");
Serial.println("b Move backward.");
Serial.println("l Turn to the left.");
Serial.println("r Turn to the right.");

}

void loop(void) {
char ch = Serial.read();
if (ch != -1) {

Serial.write(ch); \\ Echo so user sees what they typed
if (ch == 'f') {

// Code to move forward
} else if(ch == 'f') {

// Code to move forward
} else if(ch == 'b') {

// Code to move backward
} else if(ch == 'l') {

// Code to turn left
} else if(ch == 'r') {

// Code to turn right
} else {

Serial.println("");
Serial.print("Unknown command ");
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This works because the internal rep-
resentation of -1 is a bit pattern with
every bit set to 1, exactly the same
as the bit pattern for the largest
possible number of that size.

Serial.write(ch);
Serial.println("");

}
}

}

Note the use of Serial.println(""); to just print a newline and note
how we combined a regular print, a write, and a println to build a more
complicated output line.

3.5.5 Serial.readBytesUntil

You don’t have to want to do anything very fancy before you need to be
able to enter more than one character at a time. Energia/Arduino provides
a way to read a whole bunch of characters into a string with the routine

Serial.readBytesUntil(<termchar>, <buffer>, <length>);

This is a lot more complicated than any previous routine. Ideally, it reads
characters from the input and stores them into the buffer until either it runs
out of space or it sees the special character <termchar>. For example, we
could read a name into a string, stopping when we see a space, with the
code

char nameBuffer[16];
Serial.readBytesUntil(' ', nameBuffer, 15);

There we see a space character used as the terminator.

Timeout

I said ideally. In reality, the routine is extremely impatient. Unless we
take special measures it will only wait 1 second for us to type our name
in. That is probably not what we want. This is because the Serial system
comes with a built-in setting that means that it will only wait for 1 second
before giving up on any input command. We will normally want a much
more patient system. We tell Serial to be patient by setting the Timeout
value to a very large number. Because of the weird behavior of signed and
unsigned numbers the best way is to call

Serial.setTimeout(-1);

immediately after we call Serial.begin. We shall see a lot more of this.

3.5.6 I/O with Numbers

The three I/O routines that we have met so far allow us to move characters
between the PC and our LaunchPad computer. These are the basis of all
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serial interaction. However, we often want to deal with numeric information
instead of character information. We need ways to write numbers out and
read them in.

3.5.6.1 Printing numbers

The Serial.print() routine can do more than just print fixed character
strings. This is an example of an overloaded function, a function that can
take different kinds of arguments and do something appropriate with them.
So far we have used it to print strings but if we pass in a single integer
instead then it will interpret the bit pattern as a number and print the value
in decimal. As before, there are two forms

Serial.print(<int>)
Serial.println(<int>)

that differ only in whether or not they start a new line. For example, we can
use the two different forms to print a message with a number in it like this:

int age = 21;
Serial.print("Your age is ");
Serial.println(age);

If you put this into a program then it will print out

Your age is 21.

In this simple case I printed the value of a single variable. I can also print
the value of an expression, like this:

int nEgg = 27;
Serial.print("You have ");
Serial.print( nEgg / 12 );
Serial.print(" dozen eggs with ");
Serial.print( nEgg % 12 );
Serial.println(" left over");

which will print

You have 2 dozen eggs with 3 left over.

and will move to the start of a new line.

3.5.7 Printing in Hex

Because we are mostly going to be thinking about values inside our microcon-
trollers as bit patterns, we often want to see them in binary. Energia/Arduino
supports this by passing an extra argument to the print routine. In fact,
not only does it support printing in binary, but it also allows you to print in
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BEWARE
Serial.parseInt only behaves in this
sensible way if you have set the time-
out value to some large value. Oth-
erwise parseInt stops when it sees
a non-digit OR when it times out,
whichever happens first.
This is why I recommend always us-
ing Serial.setTimeout(-1).

I have made a rare use of the abil-
ity to put multiple commands on a
single line, separated by semicolons.
It sort of makes sense here because
the three commands print a single
line on the output. I would not try
this for anything longer than this.

hexadecimal and in octal (old-fashioned base 8), as well as to explicitly ask
for a decimal value. The following forms are supported:

Serial.print(<int>, DEC); // Explicitly print decimal
Serial.print(<int>, HEX); // Print in hexadecimal
Serial.print(<int>, OCT); // Print in octal
Serial.print(<int>, BIN); // Print in binary

Thus we can print the same number in all these ways and get all these
different answers.

Serial.print(123, DEC); // Prints as "123"
Serial.print(123, HEX); // Print as "7B"
Serial.print(123, OCT); // Print as "173"
Serial.print(123, BIN); // Print as "1111011"

Note that the non-decimal formats do not add any information to tell you
about the base that is being printed. In C/C++ we have to write that
number as 0x7B, but when we print it all we get is the 7B.

3.5.8 Reading numbers

Energia/Arduino also makes it easy to read numbers from the input. To
read a single decimal number from the input we use the routine

Serial.parseInt();

It will read characters from the serial port until it sees one that is not a
valid digit and then it will stop and return the value.

void setup() {
Serial_begin(9600);
Serial.setTimeout(-1);

}
void loop() {

int value;
while (1) {

Serial.print("Enter a decimal number ");
value = Serial.parseInt();
Serial.print(value); Serial.print(" in hex is ");Serial.println(value,HEX);

}
}

3.6 Summary

We can write numeric values in C using decimal (100) hex (0x64), binary
(0b01100100), and ASCII (’d’) representations. We store values that change
in *variables* of types such as
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char // 8-bit number (range -128 -> 127)
int // 16-bit signed number (-32768 -> 32767)
unsigned int // 16-bit unsigned number (0 -> 65535)

All variables must be *declared* before any other statements in a program.

We change the values of variables using *assignment* statements of the form

<var> = <expression>;

We can talk over a serial cable to a PC running a terminal program such as
PuttyTel using the routines

Serial.begin(int baudRate); // Makes connection at speed.
Serial.write(int theChar); // Writes one character to PC
Serial.read(); // Waits for 1 char and returns it
Serial.print(char* theString) // Writes whole string to PC
Serial.printf(int arg) // Writes integer to PC in decimal
Serial.printf(int arg, int base) // base is one of DEC, BIN, OCT, HEX
Serial.parseInt() // Reads a single number
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Chapter 4

Basic Ideas of Programming
in C

4.1 Introduction

Fundamentally, a computer is a tool for executing programs. A program is
a set of instructions for performing some task. A familiar, non-computer,
example of a program would be a recipe. It consists of a list of the resources
that you need, the ingredients list, and then a set of instructions that tell
the cook what to do with the ingredients. A computer program is like a
recipe. It has a list of resources, the data items that we process, and a list
of instructions that tell the computer what to do with the resources.

From the CPU’s point of view, the program must be expressed as a series of
machine instructions, because those are the only things that the computer
knows how to manipulate. Unfortunately, even with an assembler to help
us, programming at the machine level requires that we deal with a level of
detail that is very difficult for humans. Computers have tiny minds that
work on one detail at a time and see only the details. People have minds
that get confused by too many details and work best thinking in terms of
larger, higher level, more abstract, ideas than the tiny details that satisfy
computers. In order to bridge the gap between the human programmers and
the computers that execute their programs, the humans have developed tools
to let them do their thinking at the more abstract and then translate the
ideas into the detailed code for the computer. The basic abstract tools are
high-level languages and the compilers that translate them into the machine
code that the computer can understand.

Natural languages, such as English, evolved to allow humans to communicate
with each other. They allow humans to express the full range of ideas to
each other (indeed, there is evidence that languages are so integral to the
way that human brains work that it may be impossible for us to think any
thought that cannot be expressed in our language). A computer language is

57
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C vs C++
I mostly talk about C because pretty
much everything that we will need
in this course is available within the
C language. However, Arduino and
Energia actually use the full GCC
C++ compiler and so you can actu-
ally use any of the fancier features
that C++ provides. I will only men-
tion two. First, C++ allows us to
declare variables anywhere we like,
so long as it is before their first
use. C requires that all declarations
come before any executable state-
ments. Second, some of the Arduino
libraries, such as the serial library,
make simple use of objects.

an artificial language developed to make it easier for human programmers to
tell computers what they want them to do. That is a much more restricted
assignment than supporting the expression of all thought and so computer
languages are much simpler than human languages.

This chapter starts our formal study of the computer language called C (and
yes, it did come after B and it has descendants called C++, C#, and D).
This is a language that was designed for writing programs that are closely
matched to the hardware upon which they run. While, in its fullest form, it
is capable of expressing any kind of program that can possibly be written,
it lacks many of the tools that more sophisticated languages provide for
modeling more abstract ideas in the real world. However, since the language
stays quite close to the hardware it is especially suitable for writing programs
that manipulate the hardware, embedded programs of the type we wish to
write. We shall build our understanding of the language a little at a time
starting in this chapter with some of the most basic ideas, the procedures
from which a program is built and the variables and their types in which we
store our data.

4.2 Programming

A program is a detailed set of instructions for carrying out one or more
algorithms. It is usually a set of instructions for a computer, but people
can use programs too. For example, a recipe is a program; a set of more
or less detailed instructions for constructing a particular dish. Another
example of a program for humans would be the directions for getting to
someone’s house. There is room for a certain amount of imprecision in
these human based examples–e.g. “a pinch of salt”, “cook until golden”,
“about half a mile”–because the human using them is supposed to possess
intelligence and initiative. There is no such room in computer programs
because computers possess neither—they are extremely careful and persistent
morons. A computer will do exactly what you tell it to do. It is up to you
to tell it exactly what you want it to do.

Typically, we can identify four stages, or steps, to programming a computer
to perform a task;

1. High-level Design: figuring out how you would do the task,
2. Detailed Design: splitting the task into its basic operations and deci-

sions,
3. Coding: expressing all this in a language that the computer can

understand.
4. Debugging: figuring out why the program does not do what it should,

and altering it so that it does.

The second and third steps are the subject of this chapter. These are
relatively straightforward steps and can be taught. Unfortunately, they are
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Debugging
The term debugging, meaning get-
ting the problems or ‘bugs’ out of
a program, has a history which pre-
dates the computer. The Oxford En-
glish Dictionary traces the first writ-
ten mention of the term to an article
in the Journal of the Royal Aeronau-
tical Institute in 1946 that speaks of
“debugging an engine”. Apparently
the term was sufficiently established
in spoken currency to appear in the
literature by then. It seems likely
that the term came to computing
with the engineers who worked on
the first wartime computers.
The most famous case of a com-
puter bug was recorded by Admi-
ral Grace Hopper (one of the de-
signers of COBOL and a pioneer
in program testing). In 1948 a
technician traced a problem in the
Mark II Relay computer at Har-
vard to a dead moth trapped in
the contacts of a relay. Grace Hop-
per duly recorded the event in the
computer log book as the “first ac-
tual case of a bug being found” and
stuck the moth in with sticky tape.
The book and the moth are on dis-
play in the Smithsonian Institution.

Figure 4.1: The first actual
bug!

in some ways the least important. The most important step is the first one,
making sure that you understand the task completely, followed closely by
the fourth, fixing the mistakes in the first. The trouble is that these are
difficult to describe; you have to learn them by experience.

The fourth step, debugging, is particularly frustrating in this regard. You
put hours of work into designing and implementing a program and it doesn’t
work correctly. You spend ages looking at it, fiddling with it, trying what
you know of debugging, and it still doesn’t work. So you ask an experienced
programmer for help and she spends 3 seconds looking at the program then
does something simple and tells you which stupid mistake you have made. It
has happened to us all. It goes on happening. The only thing that changes
is that eventually you are the one who gets asked for help, gives it, and tells
the person you helped what a silly mistake they made. It doesn’t stop you
making your own mistakes though!

4.2.1 Flowcharts and Pseudocode

While I will concentrate in this chapter on presenting the details of the
C language needed to execute step three of our general scheme, I want to
start by mentioning some tools to help in steps one and two; flowcharts and
pseudocode.

A flowchart is a diagram that represents a piece of a program. It consists
of a set of boxes joined together by arrows. The boxes contain short English
or mathematical statements that describe actions that the program must
take and the arrows tell you how to navigate round the diagram. Flowcharts
can help us visualize the operation of a computer program, especially one
that makes many decisions.

Pseudocode is a kind of fake high-level language. It is a way of expressing
mid-level programming ideas that is reasonably easy for humans to under-
stand without bothering with the details needed to make a valid C program.
Once programs get more than a few lines long it can become hard to both
express the main ideas and get all the details right. In that case it can be
helpful to sketch down the ideas in a mixture of bits of code and fragments
of English without worrying about details of syntax. Once the ideas are
clear then it is usually pretty simple to translate the pseudocode into real C.

Flowcharts are the best tools for designing programs that must make a lot of
decisions. In them, the decisions are clearly visible as are the resulting paths
through the code. Pseudocode is not as good at making the flow of control
visible but it is a lot easier to translate into real code. Simple programs
are best designed using pseudocode that you then translate into C. More
complex programs are often best designed with flowcharts that you express
first as pseudocode and then turn into real C.

Most new programmers are reluctant to spend the few extra minutes that
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Programming Discipline
Edsger Dijkstra coined the phrase
’A Discipline of Programming’ for a
famous and very beautiful book that
he wrote on the subject. It is a good
phrase to remember. Good program-
ming requires discipline as well as
creativity. Unfortunately, the real
benefits of discipline don’t become
apparent until you are writing fairly
long and complex programs By then,
if you have learned poor habits, they
are very hard to break. In particu-
lar, the habits of careful design and
of rigorous commenting are tedious
and boring to acquire and seem like
a real waste of time at first. It is only
when you have to write or modify
a long program that their benefits
become apparent. By then it is too
late. This is why I stress the need
for discipline from the beginning so
that you build good habits and don’t
have to relearn later. That is what
teaching is all about; trying to pre-
vent students from repeating the
mistakes of their teachers!

it takes to design a program using these methods. Early programs are
easy enough that they charge straight in and start writing code because
it is obviously so much faster to do it that way. And at the beginning it
works pretty well. Pretty soon, however, programs get complicated enough
that this technique becomes a hindrance. It still seems fastest to skip the
flowcharts and pseudocode and just write the code. But if you do it that
way, then you bog down in details and actually spend twice as long getting
to a working program as the people who did it right from the very beginning.

As I present the control structures of C in the next few chapters I will use
flowcharts to illustrate many of the structures. Then, as I present more
complex programs, I will often use pseudocode to express the ideas before
translating them into the final C code.

4.3 Introduction to C

It is time to study the details of C and explore the basic structure of a C
program. Since a computer program exists to manipulate bit-strings in the
computer memory, the basic C entity is a named block of memory. There are
two basic classes of memory block, ones that store data, called variables,
and ones that store code, called functions or subroutines. Named entities
are used to construct various types of statement, the building blocks of
almost all programming languages. We have already encountered some kinds
of statement such as the function call and the while loop. Before we examine
the details of variables, statements, and procedures we need to develop a
little notation.

4.3.1 Notation–Meta-syntactic elements.

A syntactic element is a legitimate piece of a language. For example, in
english, nouns, verbs, subjects, predicates, etc. are all syntactic elements. A
meta-syntactic element is something that stands in place of a real syntactic
element. Thus, we might describe the form of a simple sentence using
meta-syntactic elements

<subject> <verb> <object>.

The elements in angle brackets, and the brackets the delimit them, are the
meta-syntactic elements. A real sentence would be made by replacing each
element by an actual element of the appropriate kind. For example, the
sentence

The dog drinks the martini.

is of this form, where “The dog” is the subject, “drinks” is the verb, and
“the martini” is the object.
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Occasionally we shall run into the
problem that our meta-syntactic el-
ements such as <, >, [, |, and ],
are also valid symbols in C. If there
is any chance of confusion then we
shall surround the C symbols with
single quotes.

Although it is legal to begin names
with the underscore I strongly ad-
vise against doing so. Compilers
regularly use names the start with
an underscore for their own behind-
the-scenes purposes so it is wise for
us to avoid them.

There are times when a variable is so
short lived or so generic in its appli-
cation that it does not really need a
long-winded detailed name. In such
cases the old standby names like i, j,
k, etc. are perfectly adequate. For
example, in code that uses many for
loops (see below) it may be just fine
to use i, j, etc. for the loop vari-
ables. Any variable that is visible
over more than a few lines of code
or that holds any interesting kind of
variable should have a sensible name.
Named pieces of code are always suf-
ficiently important that they must
have meaningful names.

From now on, I shall often use angle brackets to surround such elements.
The words inside the brackets are chosen to tell you what sort of thing the
real element is. Of course, the brackets do NOT appear in the real form.
For example, an assignment statement has the form

<variable> = <expression>;

and so an example of a real assignment statement would be

nByte = 2 * nWord 5;+

where the <variable> is nByte and the <expression> is 2 * nWord + 5.

In addition to angle brackets we will also need square brackets, [ and ], to
mark optional elements. For example, we shall meet the following line:

<type> <name> [= <expression>];

Here the square brackets tell that the equals sign and the expression are
optional elements. You can have a valid statement with them or without
them. However, if either is present then both must be. You can’t have the
= without the <expression> or the <epxression> without the =.

4.3.2 Names in C

Every program needs a way to represent different kinds of object that are
specific to the task in hand and thus not built into the language. Since a C
program is made up from text, we use text strings called names to represent
these objects. Examples of objects would include memory locations to hold
program data and pieces of code to manipulate those data.

C requires that names start with a letter and may contain any mixture
of letters, numbers, and the underscore character ‘_’. C names are case
sensitive so myName and MyName are two completely separate variables.
Note also that C reserves a small number of words for its own use and will
not let you use any of these as variables. These reserved words are

auto break case char const continue default
do double else enum extern float for
goto if int long register return short
signed sizeof static struct switch typedef union
unsigned void volatile while

We shall not encounter all of these words in this book, but it is a good idea
to know that they all exist. Even if we don’t expect to need them ourselves,
the C compiler will still not let us use them as names.

If you use short, easy to type, names such as j, k, or a3, then you completely
obscure the meaning and intended use of the name. Instead, make a practice
of using names that describe the meaning of the named object. For example,
if you have a value that is used to count the number of words in a sentence
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Capitalization
C++ is extremely case sensitive.
’W’ and ’w’ are totally different let-
ters from its point of view. Thus
numwords and numWords are differ-
ent names. It would be a very bad
idea to use both of them in the same
file. C++ would see them as com-
pletely different but you might well
get them mixed up.

While you are not required to give
the variable a starting value it al-
most always a good idea. If you
don’t specify an initial value then
the variable starts off with an un-
known value that almost certainly
nothing that you want.

then give it a name such as numWords or wordCount. If you have a string
used to ask the user for their name then call it askNameString or something
like that.

4.3.3 Variables

A variable is a named box into which we store a value. Most variables,
as their names indicate, have values that change during the course of a
program’s execution. Variables have three kinds of information associated
with them;

• The actual value: stored as a bit pattern in some bytes of memory
and manipulated by the CPU.

• A range of acceptable values: represented in the language by the
type and communicated to the compiler in the declaration.

• A meaning: which exists only in the mind of the programmer and
which can be made visible only by the choice of a good name!

All these different pieces of information are represented by the name, so it
pays to choose a good one.

In a flowchart or in a pseudocode version of a program we introduce a
variable by naming it and giving it a value. All the other information is
stored in our minds. So we might introduce a value at first use like this,

numWords = 0

which introduces the name and gives it a starting value.

In C/C++ we have to provide more information. Before we use a variable,
we must not only give it a name but must also tell the compiler what type
of value it will hold. The type is an abstract representation of the range of
values that the variable can take.

A declaration is a a simple statement that introduces the name of the
variable, defines its type, and may optionally give it a value. It has the
syntax

<type> <name> [= <expression>];

where, as discussed above, the brackets tell us that the “= <expression>” is
optional. Thus, a possible C++ definition of textttnumWords might be

int numWords = 0;

The full C language offers a wide variety of types, including an elaborate
mechanism for building user defined types. However, in our small systems
we will need only a few. For the moment the type must be one of:-
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All of these types are restricted to
holding integer values. Most em-
bedded computers provide hardware
support for 8-bit and 16-bit integers
and some, such as ours, also sup-
port 32-bit integers. Support for
non-integer values, for values with
decimal points, is much rarer in mi-
crocontrollers. Our TM4C123 is one
of the rare microcontrollers that can
handle non-integers. It allows you
to use the float type to hold floating
point number with about 6-7 deci-
mal digits of precision.

You can’t begin a decimal number
with a leading zero because C inter-
prets numbers that start with a 0
as being in base 8, or octal. This is
a rather obsolete way to represent
binary bit patterns that has been
superceded by hex.

char a signed 8-bit object that can hold a single ASCII
character or any integer in the range –128 to +127

unsigned char an unsigned 8-bit object than can hold a positive
integer in the range 0 to 255

short a 16-bit signed object than can hold an integer in the
range -32,768 to +32,767

unsigned short an unsigned 16-bit object than can hold an integer in
the range 0 to 65535

int a 32-bit signed object that can hold an integer in the
range -2,147,483,648 to 2,147,483,647

unsigned int he unsigned version of an int. It can hold a positive
integer in the range 0 to to 4,294,967,295

As you see, these types map directly onto underlying 1, 2, and 4-byte
machine values. On desktop computers, it is common practice to use int
for most general purpose variables unless memory space is very tight. On
micro-computers we try to use the smallest type that will accommodate the
range of values expected. Using longer types wastes space and may also run
slower.

4.3.4 Constants

While a name stands for a value, a constant is an object whose value is
obvious from its representation. For example, 123, 0x3BC, ‘t’, 3.141592653,
and “a short string” are all constants. C supports four kinds of constants;
integers, reals, characters, and strings.

Integers.

Integers are the most common kind of constants because they are the natural
objects to represent in a binary bit pattern. The most obvious integer
constant is a string of decimal digits, the digits

0,1,2,3,4,5,6,7,8,9

that does not begin with a zero. Such a constant can have any number of
digits, but when it is used the value will be truncated to the number of bits
that fit in a storage location. Thus single byte values can range from 0 to
255, two-byte constants from 0-65538, and so on.

Strictly, there are no negative constants. You make a negative number by
preceding a constant with a ‘-’ sign, but the sign is treated as a separate
operator that changes the value from positive to negative. This distinction
is normally not worth worrying about and you can treat -1028 as a valid
negative constant without any problems.

Because decimal constants are not simply related to the underlying bit
patterns it is often convenient to express constants in hex. A hex value in C
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Table 4.1: Escape Codes
Code Meaning
\n linefeed
\t horizontal tab
\r carriage return
\\ the \ character
\’ a single quote, ‘
\” a double quote, “

begins with the marker 0x or 0X and then consists of a string of hex digits,

0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,A,B,C,D,E,F.

Thus 0x1ac and 0x00FC are valid hex constants. These are commonly used
when we are interested in the underlying bit pattern.

Although standard C stops at this point, CodeWarrior has extended the
language to support binary constants written directly as strings of 1’s and
0’s with a leading 0b or 0B marker. Thus the hex constant 0xC5 could
also be written as the binary constant 0b11000101. Because you can’t use
commas in any kind of numeric constant it is generally not a good idea to
write numbers of more than 8-bits in binary. They are just too hard to read.

Real numbers

In addition to integer constants, C also supports floating point numbers as
a representation of real numbers. They add the decimal point to the list of
acceptable characters and also allow you to specify a power of ten, using
the same ’E’ notation as a spreadsheet. Thus the following are valid real
constants.

3.14159, 2.0E3, 1.995E-5

BEWARE: Just because you can type a real number, does not mean that
the computer will do what you expect. Unless you specifically created a
floating point variable to hold the value, C will simply turn the value into
an integer, throwing away any fractional part without telling you!

Characters

As discussed in Chapter 1, computers use small integers to encode characters.
C understand the standard coding and so supports character constants. A
character constant consists of a single ASCII character surrounded by single
quotes. Thus ‘a’, ‘c’, ‘&’, and ‘L’ are all character constants. Internally,
of course, each is represented by the appropriate bit pattern. Thus the
character ‘a’ and the small constant 0x61 are internally exactly the same bit
pattern. C provides a way to enter some of the control codes using special
codes called ‘escape’ codes. These are two-character sequences that are
internally replaced by the correct ASCII bit patterns.

Table 4.1 lists the valid escape codes. Note that it includes escape sequences
for the quotation marks and the backslash character that would otherwise
get interpreted specially and so not be able to appear as characters.
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Some C compilers automagically in-
terpret the ‘\n’ escape sequence, pro-
ducing both a carriage return and
a linefeed code in the actual string.
Energia leaves this up to us and puts
in only a linefeed. It gives us greater
control at the expense of some con-
venience.

’=’?
From a mathematical point of view
this is a somewhat perverse use of
the equals sign. It does not specify
a relationship between the two sides
but the operation of replacing the
old value of a variable with a new
value. It is best to pronounce the
single equals sign as becomes to
remind ourselves that it alters the
variable on its left.

We already learned that simple
statements in C must end with a
semi-colon so that the compiler can
tell that we are done. This allows us
to put multiple assignments on one
line if we really want to. Personally
I discourage this because I find it
hard to read.

Strings

The last kind of constant is a string constant. A string is collection of
characters, each stored as ASCII values, terminated by a NULL character
(value 0x00). A C string constant consists of the list of characters enclosed
in double quotes, ‘”’. You can put any character constant inside a string, so
that the escape sequences are commonly found inside strings. For example,
a string that would be used to print the text

That’s all Folks!

on a line by itself would appear in C as

“That\’s all Folks!\r\n”.

Note both the use of an escape sequence to include a single quote, or
apostrophe, in the string and the use of the ‘\r’ and ‘\n’ escape sequences
to end the string. These are needed to force the display down to a new line.
The carriage return character, ‘\r’, moves the cursor to the start of the
current line while the linefeed character, ‘\n’, moves it down to the next
line. Most strings that are designed to be printed or displayed end this way.

4.3.5 Assignment Statements and Expressions

In C we change the values of variables by assignment. An assignment
statement has an ‘=’ sign with a variable name on the left and a value on
the right. The simplest form just assigns a constant to a variable.

numWords = 1;

The power of a computer really becomes apparent, however, when we note
that the value on the right can be any normal mathematical expression. This
may even involve that value of the variable on the left. This does not present
a problem since the whole expression on the right is always evaluated before
the assignment is made. Thus the value that is used is always the old value
and there is no contradiction set up. Thus, any of the following would be
legal.

numWords = numWords + 1; // adds one to numWords
value = (value * 16) + newValue; // used in translating

// strings of hex into actual numbers.
voltage = (ADCValue * 5) / 255;+

An expression in C is basically the same as an expression in mathematics; a
pattern of values and operators that can be evaluated to give a single result,
usually a number.

C provides a fairly robust set of operations that you can use to build
expressions and it organizes them by mathematical precedence.
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In later chapters we shall meet a
variety of other operators, including
ones to compare numbers and ones
to manipulate the individual bits
of the numbers. These will allow
us to perform many other kinds of
operation but will make things more
complicated, so I have left them till
later.

The mathematical precedence controls the order in which operations are
performed. For example, multiplication, *, has higher precedence that
addition, +. That means that multiplications are performed before additions.
Thus 7 + 3 * 4 is evaluated as 7 + (3*4) and gives the result 19 rather
than being evaluated as (7+3)*4, giving 40. Note that you can always use
parentheses to control the order of evaluation.

Arithmetic Operators

C supports the usual arithmetic operators of addition (+), subtraction (-),
multiplication (*), and division (/). As in standard mathematical practice
multiplication and division have the higher precedence and addition and
subtraction a lower precedence, so that all multiplications and divisions are
performed before additions and subtractions (subject always to parentheses).
These operators are all binary operators, meaning that each takes two
operands. There are also unary forms of + and - that take only a single
argument. The unary forms have higher precedence than multiplication or
division. The unary minus operator combined with a numeric constant gives
the effect of a negative constant. Thus the following is a legal expression in
C

4 + 3 * -2

where the + and * are binary operators and the - is unary. This expression
would evaluate to the value -2.

There are also some fancier operators. In particular, you can combine any
of the binary operators with an "=" sign to make an operator that modifies
a value in one go. For example

aVal += 3;

is exactly equivalent to

aVal = aVal + 3;

but is shorter to type.

You can go even further with the operators "++" and "–". These allow you
to modify a single value without needing an "=" sign at all. They are called
increment and decrement operators. They either increase the value by
one (++) or decrease it by one (–). Thus

aVal++:

has exactly the same effect as

aVal += 1;

They are very often used in the last clause of for loops, like this

for (i = 0; i < 10; i++) {
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Other current block structured lan-
guages include the elderly Pascal,
Java, and derivatives of C such as
C++, C#, GO. Hints of block struc-
ture have also been added to other
languages such as BASIC and mod-
ern version of FORTRAN, though
the underlying languages have very
different roots.

NOTE: While simple statements
end with semicolons, blocks do not.
It is not usually an error to follow
the ending ‘}’ with a semi-colon, but
it is pointless.

// do something ten times
}

4.4 Compound Statements

So far we have met the two simplest kinds of C statement, the declaration
and the assignment. C is a member of a large family of languages that all
trace their ancestry to an obsolete language called Algol. Such languages
share a number of features including the idea of a block of code.

A block is unit of code with a single entry point and (normally) one exit
point. In C we group the lines of a block together by enclosing them in
curly brackets ‘{‘and ‘}’. and we can use a block pretty well anywhere that
a statement would be legal. Because blocks bind several simpler statements
into one more complex entity, they are also called compound statements.

One of the key ideas of a block is the idea of scope. Names that are declared
inside a particular are visible only from within that block, including within
any enclosed blocks. This is best understood with an example.

1. while (true) { // start of outer block
2. char A = 0; // declare A visible from here on
3. A = A + 1; // A is visible here but B is NOT
4. if (A > 4) { // Start of inner block
5. char B = 2; // B is visible only in inner block
6. A = 2 * B; // A is also visible in inner block
7. } // end of inner block
8. putchar(A); // A is still visible but B is NOT
9. } // end inner block

There are several important things to note about this (quite useless) example.

• The numbers at the beginnings of the lines are NOT part of the
program. I added them to make it easier to refer to the individual
lines. A C program does not use line numbers.

• You would never normally comment every line but it makes sense here
as this one of the first piece of C that you seen.

• All simple statements in C must end with a semicolon, ‘;’. This
terminates the statement and would allow us to put multiple statements
on a single text line, though I strongly discourage this practice; it
makes programs harder to read.

• I have used indentation, white space at the beginning of lines, to
make the block structure easily visible. This is an extremely common
and useful practice. Computer programs are densely packed with
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The popular Python programming
language takes this idea one step
further. It requires the indentation
and dispenses with the curly brack-
ets. There the indentation enforces
the grouping of lines into blocks.

Conditionals are statements that
begin with the keyword “if” and
they allow the code to behave differ-
ently depending the values of vari-
ables.
Loops are statements that can
cause a block of code to be repeated
some number of times.

information and anything that we can do with the formatting to make
the structure more visible is a good idea!

• The variable B is declared only in the inner block, lines 5 and 6, and
any reference to it before or after the block would be an error. The
compile would fail to compile the code and would put up a message
telling us that the name B was not defined at that point.

• The variable A is declared in the outer block, at line 2. It is visible
throughout the rest of the code, including the inner block. Variable A
ceases to exist at line 9, when the outer block ends.

• We say that the inner block is nested within the outer block. Blocks
in C can be nested to any depth.

• You can put a block anywhere a single statement is legal but blocks
are normally used to enclose the bodies of conditionals, loops and
procedures (see below).

4.5 Procedures

A subroutine or procedure is a self-contained piece of code that performs
some useful task. The code is given a name and can be used by calling on
that name. The advantage of a subroutine is that its code only appears in
one place in the program but it can be used in many places. This reduces
the size of the complete program and also reduces the amount of work
for the programmer. In particular, many subroutines perform tasks that
are common to many programs. In such a case we don’t have to rewrite
the subroutine, instead we include a copy in our program and use it as
needed. Even better, we don’t even have to write a subroutine if we can
find one that already does the job. Indeed, one of the great advantages of
programming in high-level languages such as C or Java is that they come
with libraries of subroutines to perform most of the common tasks for us.
For example, subroutines take care of such complex tasks as writing text to
the screen, reading text from the keyboard, reading and writing disk data,
and converting numbers from their internal binary form into human readable
strings for printing.

If a subroutine always had to do exactly the same thing every time that it
was called, for example printing the string “Hello world.”, then it would be
of only limited utility. We need to be able to pass some information to the
subroutine so that it can perform a slightly different task each time. For
example, we might want a subroutine PutString that can print any string
that we ask it to. We use arguments to pass such information.

Every subroutine has a list (possibly an empty list) of values that it gets
from the program that calls it. We call that list the argument list. When we
invoke (call) a subroutine, we write the name of the subroutine and write



4.5. PROCEDURES 69

< and >
Remember that the angle brackets
mark placeholder items. In a real
declaration <type> will be replaced
by a real type name, such as int.,
<name> will be replaced by the ac-
tual name of the subroutine, and so
on.

the list of arguments in brackets after the name. Thus, a call to a PutString
routine might look like this

PutString("A string to write.");

Each subroutine defines its own list of arguments and we have to look at the
documentation for the subroutine to know what those arguments do and in
which order they must be written.

Sometimes a subroutine needs to send information back to its caller. In
the common case that we need to return only one piece of information we
describe that information as the result of the subroutine and we access the
return value by putting the subroutine call into an expression such as the
right hand side of an assignment. Thus, a routine called StrLen that takes
a string as its only argument and returns the number of characters in the
string could be used like this

nChar = StrLen("How long is this string?");

After this statement was executed, nChar would have the value 24, the
number of characters in the string (including the question mark).

The C standard provides a large number of subroutines to perform common
tasks but we can also write our own subroutines to perform tasks that we
find useful. We need to identify the arguments that our subroutine will
need and we need to name the subroutine and the arguments. As usual, we
should give them names that suggest their uses.

4.5.1 Declaration and Definition

When we make up our own subroutines we need to provide two kinds of
information. First we need to tell any code that uses the subroutine what
types of arguments it takes and what result it returns, if any. Second, we
need to tell the compiler what it is that we want the subroutine to do. We
call the first of these operations declaration and the second definition.
A subroutine must be declared before it can be used anywhere and that
declaration may be given several times if the program is split across several
files. The subroutine must also be defined exactly once, in a file with other
code or in a file all by itself.

Declaration

In C a subroutine declaration statement looks like this

<type> <name>(<type> <arg1>, <type> <arg2>...);

The first <type> specifies the type of the subroutine result. This will either
be one of the arithmetic types that we met earlier or special type void if the
subroutine does not need to return a value.
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Strictly, you can declare a subrou-
tine with no arguments simply by
omitting the arguments. Some com-
pilers, however, are quite picky and
will issue a warning if you don’t use
the void keyword

The hash sign, ‘#’ at the beginning
of the line marks this is a rather spe-
cial sort of C command. The com-
piler does not do all its work in one
go, instead it breaks the job up into
several phases called ‘passes’. The
first pass through the file is called
preprocessing. During this phase
lines that begin with a ‘#’ are ex-
amined and acted upon. In this case
the preprocessor replaces the line
with the entire contents of the file.
So when the next phase of the com-
piler runs it sees a much larger file
with all the header information in-
cluded.

The <name> is the name by which the subroutine will be known throughout
the program. This should be a sensible name that tells you about what
the subroutine does. I normally like to begin subroutine names with a
capital letter, but that is a matter of style. The compiler knows that we are
declaring a subroutine and not a simple variable because of the parentheses
that follow the name.

The parentheses hold a comma separated list of arguments. Each argument
is given with its name and its type. The name is the name by which the
argument will be known inside the subroutine. It has nothing to do with
the actual value that we put in when we call the subroutine and the name is
invisible from outside the subroutine. If the subroutine does not need any
arguments then you should use the void keyword to insist that you didn’t
forget anything, thus,

int GetKey(void);

Because all names have to be declared before they are used, we have to put
a subroutine declaration somewhere before the first use of the subroutine.
This means that we tend to put declarations at the start of each file of C so
that they are visible to all the code below. If a subroutine is likely to be
used in more than one program then we often puts its declaration into a
separate file, called a header file, with a name of the form <name>.h, and
then use a special command

#include ``name.h''

at the start of every file that uses the subroutine. This include command
tells the C compiler to read the contents of the file name.h before continuing
to process the main file. Thus we can put common declarations in a header
file and then use that header file in lots of different programs.

Definition

We define a function in a slightly redundant way. A function definition starts
off with a repeat of the declaration and then follows that with the body, a
compound statement wrapped in curly brackets, thus

<type> <name>(<type> <arg1>, <type> <arg2>...) {
<body, declarations then actions>;
}

If the subroutine has a result, i.e. if it is a function, then we need to include
a return statement in the body. This is a line with the keyword return
followed by an expression that evaluates to the result. For example,

return sum/count;{
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Yes, I know we haven’t formally met
the if statement yet, but it should
be pretty obvious what this does!

We only need to have declared the
procedure before using it. The ac-
tual definition could be anywhere,
later in the same file or even in a to-
tally separate file. We do not even
need to have access to the defini-
tion, merely to the code the does
the work. It possible for someone
else to define and compile the code
and give it to us in object form. So
long as they tell us how the subrou-
tine is declared then we can use it
without knowing how it works.

Example 4.5.1
Here is a routine to blink the LED connected to bit 1 of Port F, turning it on briefly then turning
it off. We will make the length of time into an argument to the routine.. This subroutine will not
need to return a value.
/*
* BlinkF1 will turn on bit 1 of port F for onTime milliseconds.
*/
void BlinkF1(int onTime) {

digitalWrite(PF_1, HIGH); // Turn LED on
delay(onTime); // Wait onTime mS
digitalWrite(PF_1, LOW){; // Turn LED back off

} // End of subroutine
Note that I rather overdid the commenting again since this is the first complete procedure we
have seen.

There must be at least one return statement for every subroutine that has a
result and there may be more than one if there are different paths through
the routine. Thus we might have a function that finds the maximum of two
numbers

int MaxVal(int val1, int val2) {
if (val1 > val2) {

return val1;
} else {

return val2;
}

}

Calling a Subroutine or Function Procedure

Once a procedure has been declared we can use it simply by using its name.
If we have a subroutine or are not interested in the value of a function then
we we can use a subroutine call statement. This is the simplest kind of
statement, consisting only of the name of the subroutine, the parentheses,
and any arguments. For example, I can call our BlinkF1 subroutine with
some different times to generate a pattern of blinks with a series of statements
like this.

void delay(int time); // Declare Wait before use
pinMode(PF_1, OUTPUT); // Make Port A bit 0 an output
BlinkF1(100); // Short blink
delay(100); // Wait 0.1S of dark
BlinkF1(200); // Long blink
delay(100); // Another 0.1S of dark
BlinkF1(100); // and another short blink

This example also illustrates the idea that we do not need to have the
definition of a function in order to use it. Someone must have created delay
and have provided the code in some form. We may only have the compiled
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This is not the best way to perform
this function. There is some over-
head associated with a function call
and this needs n function calls to
calculate n! A simple loop can cal-
culate the value more efficiently, but
the process is less mathematically
elegant.

code, probably in a library, and need have no idea how it works so long as
we know how to call it and what it does.

If we want to use the value of a function then we simply put the name of
the function, with parentheses and any arguments, wherever we want the
value of the function. Each time the computer sees the name it will go off
and perform the calculations in the function then come back with the value.
ready for further calculation. For example, if we have a function called
GetNumKey() that returns numbers typed on a numeric keypad then we
can write a terribly primitive calculator like this.

sum = GetnumKey() + GetNumKey();

This will read the value of a key, waiting for us to press it as needed, then do
it again for a second key before adding the two values together and storing
them in sum.
Example 4.5.2
A classic example calculates the factorial of a number using a function that calls itself (a recursive
function). Because the argument of the internal call to factorial is not the same as the original
argument this does not produce an infinite loop.
int factorial(int n) {

if (n == 0) return 1;
else return (n * factorial(n-1));

}

4.6 The Structure of a Complete Program

We now have all the pieces we need to write complete small programs. Let
me remind you of a few key ideas, pretty much in the order in which they
go in a file.

Comments, especially a comment at the start of each program or procedure
that fully describes what the code does, are a vital part of writing readable
programs.

Header files allow us to bring in information about the chip we are using
and any pre-written code that we use. They are made part of the program
using the #include directive.

Every procedure that we use in the program must be declared before its first
use, either in a header file or in the space before the main program. You
may also choose to define the procedures there but you don’t have to.

Programs for Arduino or Energia, technically known as sketches, must
consist of at least two procedures, which you do not need to declare, setup(),
which will be executed exactly once before the program goes on to call the
other procedure, loop(), infinitely.

Pure C and C++ programs must instead contain a procedure called main().
This procedure marks the start of the program but may call all sorts of other
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procedures to do its work. Behind our backs, Arduino/Energia provides a
main program that basically looks like this

int main() {
setup();
while (true) { \\ A loop that will never end

loop();
}

}

With these rules in mind, Figure 4.2 on the next page is is a complete
Energia program to blink an LED attached to Port A pin 0 in a simple SOS
pattern. I have used the BlinkF1 and delay routines tand have created
another helper that performs three blinks of the same length.

4.7 Designing a Program

It is very difficult to set down rules and methods for designing programs.
Programming is an art that one learns by experience. So, if the only way
to learn to program is by experience, and the only way to get experience is
to program, it seems as though we have a serious chicken-and-egg problem.
Fortunately, we can break this vicious circle by learning from other people’s
experience. I have found that studying the programs of others is the most
effective way to get started programming.

There are a number of ways to gain experience. One obvious one is to
read books that describe how to solve particular programming problems.
Fortunately, the world is full of these. A good place to start is books with
names containing words like Data Structures, Algorithms, and Programming,
especially ones that call themselves an introduction or a first course or
something similar. If you can handle the rather abstract approaches there
are few rivals to Donald Knuth’s series “The Art of Programming” and
Edsger Dijkstra’s “A Discipline of Programming”.

The approach I shall take in this book is to try to provide lots of examples of
programs to solve common tasks. In particular, chapters 9 and 10 provide a
large number of program fragments and subroutines that I have found useful
in programming embedded systems. The exercises then provide suggestions
for modifying these examples in various ways because I find that modifying
existing code is an excellent way to get started producing your own code.
Once you have a little practice with this you can move on to writing your own
small programs that use the subroutines I have provided. Finally, you will
find that you are able to write your own subroutines to solve new problems.
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/*
* BlinkSOS.c
* A program to blink an LED attached to pin 1 of Port F on
* a TM4C123G LaunchPad in an SOS pattern.
* BCollett 1/9/17
*/
//
// Global variable control the duration of dot and dash.
// Values are times in mS.
int gDotTime = 100; // duration of a single dot
int gDashTime = 3*gDotTime; // dash is required to be three times dot
//
// BlinkF1(int onTime) turns the LED on for onTime milli-
// seconds and then turns it off again,
//
void BlinkA0(int onTime) {

digitalWrite(PF_1, HIGH); // Turn LED on
delay((onTime);
digitalWrite(PF_1, LOW); // Turn LED off

}
//
// Blink3F1(int time) uses BlinkF1 to perform 3 flashes,
// each of duration time, separated by 0.1 s gaps.
//
void Blink3F1(int time) {

int count;
for {count = 0; count < 3; count++} {

BlinkF1(time);
delay(100);

}
}
//
// Main program has to set port F pin 1 to be an output and
// then do three short, three long, and three short flashes
// forever. It delegates much of the work to Blink3F1.
//
void setup(void) {

pinMode{PF_1, OUTPUT);
}
void loop(void) {

Blink3A0(dotTime); // dot dot dot
delay(100); // extra time between characters
Blink3A0(dashTime); // dash dash dash
delay(100);
Blink3A0(dotTime); // dot dot dot
delay(400); // extra time between words

}

Figure 4.2: The Complete SOS Program
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4.8 Summary

A C/C++ program consists of statements grouped into blocks by curly
brackets.

Data items are represented in C by variables, each with a type, a value,
and a unique name. Procedures are also represented by names and types and
may optionally have a list of arguments that will be passed to the procedure.

Statements include variable declarations,

<type> <name> [= <expression>];

procedure declarations,

<type> <subroutine name>([<argument>[,<argument>]...]);

assignment statements,

<variable name> = <expression>;

and subroutine calls.

<subroutine name>([<argument>[,<argument>]...]);

Types describe the storage requirements and the allowed values of variable.
Allowed types include

char unsigned char
short unsigned short
int unsigned int
void (only for subroutines and argument lists)
float (not well supported by Arduino/Energia)

Expressions are normal arithmetic expressions using addition, +, subtrac-
tion, -, multiplication, *, division, /, and remainder, %, as well as parentheses,
( and ), for grouping. Valid elements in an expression include variables,
constant, and function calls.

Procedures are self-contained pieces of code that can be executed as
independent units called from another procedure. A function is a procedure
that returns a value. A subroutine is a procedure that returns no value. It
has type void. Both kinds of procedure have a body consisting of a block.
Functions must include at least one return statement within their body.

Every variable must be declared before it is used. Similarly, all procedures
must be declared before they are used. The declaration and definition
may either be separate or combined into a single entity.
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Exercises

1. Do a little research on the Web to learn something about the Morse
code. Adapt the BlinkSOS program to blink your name or your initials
in Morse code.

2. Write a C function that returns the sum of the first n integers. You
may assume that the answer will fit in an int. Your function should
have the definition

int SumFirstN(int n);



Family
A family of processors is a set of
devices that all share common ar-
chitecture but that differ in various
details. Different members of the
family come in different packages,
have different numbers of I/O ports,
and may have different amounts of
memory. Because they all share the
same CPU, any program that runs
on the smallest member will also run
on the larger members.
Since these are intended for quite
complex tasks they come in quite
large packages, from the 64-pin pack-
age of our chip up to ones with twice
that many pins.

Chapter 5

The TM4C123G
Microcomputer

5.1 Introduction

The TM4C123G is a member of the Tiva family of microcontrollers made by
Texas Instruments (TI). They are considered “performance” microcontrollers,
capable of handling tasks of some complexity. They wed an ARM Cortex-
M4F core to an extensive set of peripherals, a moderate amount of memory,
and a power control system that supports a variety of low power modes to
enable battery-powered systems with long run times. TI suggests that they
are good for tasks that include

• Low power, hand-held smart devices
• Gaming equipment
• Home and commercial site monitoring and control
• Motion control
• Medical instrumentation
• Test and measurement equipment
• Factory automation
• Fire and security
• Transportation

We will focus on the TM4C123G model which comes in a 64-pin package
where 43 pins can be used as inputs or outputs, of which 37 are actually
available for us to use on the LaunchPad board.

This chapter aims to provide a bird’s eye overview of the chip and the
LaunchPad development board. This is a chapter to skim through and
maybe look back at from time to time as you encounter new sections of the
chip.

77
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Abbreviations from Chapter 1
lsb—Least Significant Bit: the
rightmost bit of a binary number.
msb—Most Significant Bit: the left-
most bit of a binary number.

5.2 The Heart of the TM4C123G

The CPU core of the TM4C123G is based on ARM’s Cortex-M4F cpu core.
This is the cadillac of ARM’s microcontroller lineup, providing support for
memory protection and for working with floating point numbers as well
as a flexible interrupt controller and a low-level timer. Texas Instruments
has added their own clock generator module so that the chip can run with
a minimum of external components. The TM4C123G can run with clock
speeds up to 80 MHz, so that the fastest individual instructions take only
12.5 nS to execute!

The Cortex-M4F core is a complete 32-bit computer core, with hardware
to add, subtract, and multiply two 32-bit numbers in a single tick of the
clock. The CPU is an example of the RISC philosophy of CPU design.
This stands for Reduced Instruction Set Computer. Basically, this means a
machine that has a certain amount of ultra-fast memory built into the CPU,
called registers, and all its instructions either move information between
the registers and the main memory or do arithmetic on values in the registers.
This contrasts with the Intel CPUs that espouse the Complex Instruction
Set Computer (CISC) philosophy that allows arithmetic on values that live
in main memory and usually have many fewer registers. The ARM design
provides thirteen 32-bit registers for use in computation plus three that store
the addresses of important locations in memory (such as the location of the
next instruction to execute) and some with information about the current
state of the CPU and the current computation.

To make it easy to talk about individual bits in a register or memory location,
we number the bits from the right to left. The rightmost, least significant,
bit is bit 0 and the leftmost, most significant, is bit 31. We refer to a single
bit in a register by giving the register name, a colon, and the bit number. So
the most significant bit of the stack pointer is SP:31 and the least significant
bit of the data register 0 is R0:0.

The CPU core is the invariable centre of the Tiva family. The different chips
in the family have different amounts of ROM and RAM and have different
numbers and kinds of interfaces but they all have the same CPU. This means
that once we have learned to program one chip we can transfer easily to any
other. All we have to learn is names and uses of the new peripherals.

5.3 On-chip memory

Since it is a microcomputer and not just a microprocessor, each Tiva device
has some memory built into the chip. This means that it can operate as a
complete computer-on-a-chip without any other support circuits. Since the
Cortex-M4F is a 32-bit chip each individual address is 32-bits long so that
we can address about 4 billion memory addresses. That is enormously more
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than are actually implemented so there are whole ranges of address that are
invalid. If you try to access one of these the CPU will notice and will throw
up its hands and declare an error, ending your program instantly.

The TM4C123G contains five different kinds of memory in addition to the
registers built into the CPU.

First there are the obvious kinds. There are 256kB of non-volatile FLASH
memory, that is, memory that retains its contents when the power is re-
moved. FLASH is a special case of ROM memory that can be erased and
programmed in chunks through either special external hardware or by using
extra programming hardware built into the chip. We normally store our
programs in the FLASH so that the computer can start working as soon as
the power is applied. The FLASH in the TM4C123G is special high-speed
FLASH that can run at the full 80MHz processor speed.

Second there are 32kB of RAM memory. Like the FLASH, this runs at full
speed and we usually store all our changeable data here. When you declare
a variable in C++ you are giving a name to a location in this RAM. Unlike
the FLASH and the ROM and EPROM that I will describe next, the RAM
loses its memory when the power is removed. This can happen because the
whole chip has been turned off but it can also happen when the CPU shuts
down bits of the chip to lower power consumption. Obviously, when the
RAM is powered down you can’t actually do anything!

Third, there is a rather vague amount of ROM memory that TI has pre-
programmed with some useful subroutines. The Energia library that we use
often does its work by calling some of these built-in ROM routines. The
idea here is that TI can tweak the code on ROM for each slightly new chip
and the user will not have to alter their program so long as it relies on the
ROM to do the job.

Fourth, there are 2kB of EPROM. This is another kind of non-volatile
memory that is intended for storing small bits of data that will survive
a power down. For example, if you used the chip as the heart of a fancy
programmable thermostat then you would store the time and temperature
settings in the EPROM. You can erase and re-program individual memory
locations in the EPROM but it takes special code and a few mS to do it.

Fifth, there are several hundred things called Special Registers. These are
pieces of hardware that appear to the computer as ordinary memory locations
(RAM) but they are also connected to the peripherals. Bit patterns written
into these special registers control the behavior of the peripheral hardware.
For example, there is one such special location that is connected to the pins
of Port B so that when you write a value to that location it sets the voltages
on any pins of port B that are configured as OUTPUTs.
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5.4 TM4C123G On-Chip Peripherals

Around the CPU core there are a large number of support circuits.

Figure 5-3 on the facing page shows the block diagram for the
TM4C123GH6PZ chip that is the focus of this chapter. At the top
are the CPU, the with memory, and some system control circuits. The
CPU talks over the system bus to the blck labelled Bus Matrix. It funnels
the information over two more buses, the APB and AHB, to the various
peripherals that are shown in the grey blocks. They, in turn, talk to the
outside world over the pins of the device, all of which are shared by several
different functions, though only one function can be active at any time.

Figure 5.1: Internal Block Diagram of the TM4C123GH6P
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LaunchPad Clocks
The LaunchPad board provides two
crystals, the flat, square black one
labelled Y2 and the little shiny cylin-
der labelled Y1. Y2 is the 16MHz
crystal for the clock that we use. Y1
is a much slower 32kHz crystal for
use when the chip is running in very
low-power mode. The Y1 signal can
also be used by the real-time clock
that works rather like wristwatch for
the computer.

5.4.1 CPU Support Subsytems.

Intimately integrated with the CPU is the debug module (JTAG/SWD). It
uses a single wire to communicate to a desktop PC running software that
allows the host to send programs to the ARM through an interface module,
in this case a second TM4C123G built into the LaunchPad. The PC software
can then cause the ARM, called the target computer, to run the program.
The Energia package uses this interface to transfer the program to the target
and run it. The more powerful CodeComposer that we shall meet later in
the semester can do all that and then allow us to control and watch the
program as it runs. Thus we can for example step through the program one
line at a time watching the values of the registers and memory of the target
change as the program executes.

The next block, the System Control & Clocks module, both provides the
clock signal for the CPU and handles unexpected or rare events. System
Control knows how to start the CPU up when the power is first applied and
how to stop the CPU if the supply voltage should get dangerously low.

The Clock Generator provides a stable clock to control the timing of all the
chip’s internal operations. In an effort to make a self-contained computer
with the minimum number of components, TI have built a sophisticated clock
generator into the chip. There is a completely internal 16MHz clock that is
used when power is first applied. For low power, lower accuracy, tasks this
clock can be left in place all the time. Many systems need a more accurate
and stable clock such as that provided by a specially constructed quartz
crystal. TI allows you to use either an external clock signal or a an external
quartz crystal to generate a high accuracy clock. Energia switches from the
internal clock to the crystal clock before calling our setup() routine so that
we normally run from the crystal built into the LaunchPad.

The remaining blocks in the upper part of the figure are the FLASH, ROM,
and RAM to store programs and data that were discussed in section 5.3
above. These complete the basic CPU component. Various peripherals
are connected to the CPU over the two peripheral busses, the Advanced
Peripheral Bus (APB) that conveys control signals to and from the special
registers built into the various peripheral I/O substems and the Advanced
High-Performance Bus (AHB) that moves high speed data between them.

Each of these subsystems appears to the CPU as a block of memory locations
that can be read an written. Each register has different rules for what the
bits mean and what will be the effect of reading or writing them. These
rules are detailed in the Reference Manual for the TM4C123G. Some idea
of the complexity of working directly with the special registers is gained
by noting that the manual is over 1400 pages long! We will normally let
Energia handle the details for us. The manual for that is only a few dozen
pages long and a lot easier to read.

The grouping of the peripherals into four different grey blocks is more of a
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way for us to organize our view of the different kinds of I/O than a reflection
of any real difference inside the chip. We shall explore most of the subsystems
in more detail in later chapters, but here is a quick look at the functions
that they provide. The ones with asterisks after them can be skipped until
you have a reason to read about them.

5.4.2 System Peripherals

The first four of these blocks provide advanced functions that are well beyond
anything we can explore in this introduction. However, the remaining two,
the GPIOs and timers, are the basis of most our work.

DMA* The acronym stands for Direct Memory Access. This block can be
programmed to move data between some of the peripherals and the memory
without using the CPU. It is quite tricky to use and I will not discuss it
further.

Watchdog Timers* The two watchdog timers can be used to catch a
run-away program and bring it back to normal operation. A program can
set one of these running for some length of time and go off and perform
its normal operations. If the timer ever runs down then the chip will be
reset. The idea is that so long as the program is operating normally then it
keeps restarting the watchdog so that it never runs down. If a flaw stops
the main program from running normally then the watchdog will intervene
and restart the whole system. We will never use them.

EEPROM* As I explained above, this is a place to store information that
you want to survive across a power down. I have never used this function.

Hibernation Module* This one is for really low-power battery operated
systems. It allows you to turn off the clocks to almost all of the chip,
reducing its power consumption almost to nothing. The hibernation module
remains awake and looking for events that would re-wake the CPU. These
might include a timer running out or a button being pressed on a digital
pin. Again, I have never needed this.

GPIOs This acronym stands for General Purpose Input Output. These
are the digital input/output signals of the chips. They are organized into six
ports, Port A - F. Each is a set of up to 8 lines, each of which can serve either
as a 1-bit digital input or output. These are the signals that we control with
the pinMode, digitalWrite, and digitalRead routines.

Most pins are shared between the GPIO ports and various special interface
functions. When the computer first starts up most of the interfaces are
disabled so the pins act as GPIOs and are all configured as inputs. We shall
return to them in Chapter ??.

General Purpose Timers These incredibly useful peripherals can perform
all sorts of time-related functions. We can use them to generate streams
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SPI
TIs SSi interface is an expanded ver-
sion of the more standard Serial
Peripheral Interface (SPI). Energia
only supports the SPI version of the
interface, hence the name of the En-
ergia routines.

of pulses and to measure streams of pulses as well as simply to time the
operation of a piece of code. Energia uses these to support the analogWrite
command. We will learn more about them in Chapter ??.

5.4.3 Serial Peripherals

These provide various ways for our chip to talk to other chips. A serial
interface is one where data are sent one bit at a time over a small number
of wires (2-5) rather being sent over as many wires as there are bits. They
come in several forms to handle different sorts of communication.

USB* This is the omnipresent Universal Serial Bus. This is one of the
more powerful kinds, known as a USB On The Go (OTG) device. It can
operate as either a controller device (like a computer) or as a peripheral
device (like a mouse or keyboard). The LaunchPad board uses the USB
device on the debugging CPU to transfer information quickly between the
main computer and our CPU. You could use the main CPUs USB port to
build your own pointing device controller, like a mouse, or maybe to create
your own MIDI device. This is both very powerful and very complicated to
use; well beyond the scope of this course.

UART The Universal Asynchronous Receiver and Transmitter interfaces
are an older kind of serial interface. They were very common in the days
before USB became popular. They were designed to allow two computers to
talk to each other over a small number of wires (3-6) at moderate speeds and
long distances. They used to be the most popular way to connect devices
to computers. For example, the mouse and keyboard used to connect over
UARTs. They are still a good way for humans to use the keyboard and
screen of a PC to talk to a little embedded system such the LaunchPad
that has no keyboard or display of its own. The TM4C123G has 8 of these
UARTs and Energia provides fairly sophisticated support for them. We shall
make extensive use of this interface to communicate with our programs and
so it is described in Chapter 10.

SSI The Synchronous Serial Interface is a very simple 3-4 wire interface for
an embedded CPU to talk to simple, nearby, chips. It requires very little
hardware on the other end and so is ideal for really cheap external chips
such as digital-to-analog converters. Energia provides support for some of
the functions of this interface through the routines of the SPI library. This
interface is intended to talk to chips no more than a few inches from the
CPU.

IIC The Inter-Integrated Circuit Interface is a souped up version of the
SSI designed to serve pretty much the same functions. Where the SSI is fine
for one CPU to talk one external chip, the IIC makes it easy for a single
CPU to talk to several external chips without anyone getting confused. It is
somewhat more expensive to implement so you are more likely to find it in
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more complicated external chips such as LCD displays and 3-axis compass
chips. It is supported by Energia through the routines of the Wire library.

CAN* The Control Area Network is the most sophisticated of these inter-
faces. It is mostly used in complicated systems such as automobiles where it
allows the many computers that control all the fancy gadgets in a modern
car to talk to each other. It is well beyond the scope of this work.

5.4.4 Analog Peripherals

These allow the CPU to interact with continuously varying voltages instead
of the strict 0V or 3.3V of the binary signals that are natural to the CPU.

Analog Comparator An analog comparator allows the system to notice
when the voltage on a pin crosses some preset value, either going from less
to more or vice versa. You might use an analog comparator to monitor the
battery voltage in a battery operated system so that the system knows to
shut itself down if the voltage gets too small.

Analog-to-Digital Converter The Analog to Digital Converters provide
up to 22 separate inputs that can measure the value of the input voltage.
It uses a analog multiplexers to share two 12-bit successive approximation
ADCs between various external and internal signals. It is a very sophisticated
unit and we shall explore some of its functions in Chapter 11 but you will need
to read the TI documentation for full details on its capabilities. Energia
makes it easy for us to make simple measurements with this using the
analogRead() command.

5.4.5 Motion Control Peripherals

These are two sets of peripherals that are intended to make it easy to control
motors of various kinds.

PWM* This means Pulse Width Modulation, and we shall explore it in
some detail in Chapter ?? The general purpose timers can generate simple
pulse-width modulated signals but some kinds of motors need to have several
PWM signals that are correlated in fancy ways. There are two separate
systems each of which can generate four pairs of correlated signals. I don’t
think that we will need to use these.

QEI* A Quadrature Encoder Interface is a piece of hardware that can be
connected to the shaft of a motor and provide information about the rotation
of the motor. Quadrature encoders are quite expensive pieces of hardware
and usually found only an large, expensive motors. It might be possible to
use cheaper versions of these to improve our little robots but it is beyond
the current scope of the course.
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5.5 The LaunchPad board

The TM4C123GXL LaunchPad board is an inexpensive introduction to the
TM4C12 family of computers. The price is kept low ($13 per board in
2016) to make the platform attractive in a competitive market. TI wants
to encourage designers to experiment with these devices so that they will
adopt them for their money-making products.

The LaunchPad combines a TM4C123GH6 chip that has most of its I/O
pins brought out to convenient connectors with a few simple inputs and
outputs and an on-board debugging interface. Figure 5.2 shows a top view
of the LaunchPad board.

Figure 5.2: The TM4C123GXL LaunchPad

The most prominent components are the two large square black packages.
These are both TM4C123G chips. (This is one reason why we want to buy
complete boards.) Each of the TM4C123G chips has 64 very tiny pins, each
of which has to be soldered down to the PC board. While this is possible
with small tools, a steady hand, and a good magnifying glass, it is quite
challenging; another reason to use a commercial system.

If you look carefully then you will see that the board is pretty much split
into two sections by a white line running across the board at the level of
the left-hand USB plug. The upper third of the board, above the white
line, is home to the upper, square-on, TM4C123G chip, a green power
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The ICDI
TI refers to this incarnation of a de-
bugging interface as a Stellaris ICDI.
The name Stellaris is a left-over from
a previous generation of TI ARM-
based microcontrollers. The Tiva
family has replaced the Stellaris fam-
ily but the name lingers since the
two families share the same debug-
ging interface.

LED, a switch, and the top micro-USB connector. This section is called an
In-Circuit Debugger Interface (ICDI). It provides a way for Energia to put
our programs into the lower computer and, later in the semester, to allow
us to debug the programs as they run.

The larger, lower, section contains the diagonal chip and a whole bunch of
connectors on it. This is the chip that you will actually be programming.
The connectors are where you will attach wires to the pins of the computer.
There are 40 pins in the connectors and they all have little names printed
next to them so you know which pin does what. Alas, they are pretty well
randomly organized. It would be nice if all the pins of one port were next
to each other but this is not the case. Instead they are wired up according
to some plan that escapes me. Even though it spans the white line, the
left-hand micro-USB connector logically belongs to this part of the board.

In addition to the computer and the connectors, the lower part of the board
hosts a pair of switches (down at the bottom left and right) and a rather
snazzy three-colour LED (just under the reset switch on the middle left).
These are connected to the pins of Port F, but do not usually interfere with
other uses of those pins. They do mean that we can write some simple
programs without having to wire anything up to the LaunchPad.

5.6 Summary

All TM4C12x microcomputers have a 32-bit ARM Cortex-M4F CPU running
at up to 80-120MHz. They provide moderate amounts of memory and large
sets of peripherals.

In addition to the special registers used to control the extensive on-chip
interface hardware, the TM4C123GH6 has 256kB of FLASH for storing
programs and 32kB of RAM for storing data. These memories can be
programmed by an external host computer using the built-in debug interface
and a special debugging chip connected to the host over USB.

Other than the power pins and a few CPU control pins, every pin on the
chip is available as an I/O pin. In addition, most I/O pins have one or more
alternate special functions that are used if the appropriate on-chip interface
is enabled and suitably programmed. Each pin can serve only one function
at a time.

Later chapters of the book will explore the GPIOs, the timers, the analog-
to-digital converters, and the serial ports in more detail.



There is really no repetitive task
that we can’t solve with only a while
loop but sometimes another form
can make the program shorter and
easier to read.

A value of 0 means false.
A non-zero value means true.

Later we will see a way to decrease
the value of count in the same ex-
pression as we test its value. This
method is a little more obvious and
readable but the later method is
probably more popular.

Chapter 6

Logical Operations,
Conditionals and Loops in C

So far we have some knowledge of variables and expressions, we have assign-
ment statements and really simple while loops in which to use them, and
we know how to package them in procedures. It is time to build some more
control into our programs.

At the heart of almost all control is the idea of a conditional, an expression
that has one value or does one thing if some condition is met but has a
different value or effect if the condition is not met. We will start with a
look at some ways to express conditions and then explore C’s conditional
statements. Finally, we will look at some other kinds of loops that will allow
us to express some ideas a little more neatly than our simple while loop.

6.1 Truth Values

We have met the two standard Energia/Arduino truth values, the constants
true and false.Under most circumstances these are the best way to deal
with logic values because they are the most readable. However, there are
times when it is useful to understand what is going on underneath.

C represents the two possible truth values, false and true, by numbers. It
regards zero as false and anything else as true. This means that the Energia
constant false is really just a name for the number 0. Although anything
else is treated as true, Energia uses 1 as the standard value for the true
constant.

Occasionally we make explicit use of the fact that any non-zero value is
treated as true. For example, here is a way to make a loop that executes
exactly 10 times.

int count = 10;

87
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Because any non-zero value is
treated as true C compilers can
choose what value they use to repre-
sent true. 1 is probably the most
common but you can’t count on
that.

Logic Operator Precedence
It would be really nice if we could
rely on this. However, my expe-
rience suggests that including the
brackets is always a good idea.

while (count) {
count = count -1;

}

The first time round the loop count has the value 10 and so evaluates to
true. The loop runs and count gets set to 9. 9 is also not zero and so the
process continues until, on the tenth trip round, the loop count becomes 0.
At that point the while loop sees the value as false and so the loop comes to
an end.

That form of the expression relies on us knowing that C treats 0 as false and
everything else as true. The underlying logic is somewhat hidden by the
brevity of the form in which it is expressed. We can make the logic more
apparent by using a comparison expression.

6.1.1 Comparison and Logical Operators

C provides comparison operators that operate on numeric values and yield
logic valued results. These operators are

> greater than
>= greater than or equal to
== equal to
<= less than or equal to
< less than
!= not equal to

These can be used to compare any two expressions of the same type. The
most usual use is to compare two numbers. Thus 5 > 4 yields the value
true while 5 >= 7 yields the value false (0). Similarly, since characters are
represented by their ASCII values we can compare characters and ‘a’ < ‘z’
will be true.

Logical values can be combined into logical expressions with a second set of
logical operators. There are three of these operators

&& logical AND
|| logical OR
! logical NOT

which act on logic values. They combine individual comparisons to make an
extended comparison.

For example, we can test whether a character is a valid decimal digit with
the expression

char >= '0' && char <= '9'.

For this to work correctly, the logic operations have to have lower precedence
than the comparison operators so that the above expression is equivalent to
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(char \textgreater{}= `0') \&\& (char \textless{}= `9').

We call such a mixture of comparison and logical operators a conditional
expression. Thus the full syntax for our while loop is

while (<conditional expression>) {
<body>

}

We can then put in any conditional expression to make controls for the loop.
Thus a more readable way to express our earlier example is

int count = 10;
while (count > 0) {

count = count-1;
}

This does exactly the same job as the earlier example but it is significantly
more readable. The conditional expression evaluates to true so long as count
is greater than zero, exactly what the original expression did.

Let’s look at a more sophisticated example. Consider the task of recognizing
numbers in a string of characters. A number is any consecutive string of
digit characters. This little loop fragment will read in keys from the user so
long as the user types only digits and will add their values up into a number.

char ch = GetChar();
int number = 0;
while ((ch >= '0') && (ch <= '9')) {

number = number * 10 + ch - '0';
}

We shall see more of this trick later.

The comparison and logical combination operators are well suited to operate
on numbers but they don’t give us any easy way to investigate the state
of individual bits in a number. Since we are sometimes very interested in
looking at individual bits, we need a second set of operators.

6.1.2 Bitwise Logical Operators

These operators act on their arguments one bit at a time so these are called
bitwise operators. C provides a full set of bitwise operators:-

<< left shift
>> right shift
& logical AND
| inclusive OR
ˆ exclusive XOR
~ NOT.
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The first five are binary operators, combining the bits in two separate
numbers into a third number. The last is a unary operator, inverting all the
bits of a single number to give a single result. Neither kind of operator alters
its arguments. Each makes a copy of the arguments, operates on the copy,
and then returns a result that can either be tested or stored in a variable.

Let’s look at the operators one at a time.

Left Shift

A left shift operator moves the bits of its left argument some number of bits
to the left, filling in the spaces that are created with zero. Arithmetically, it
has exactly the same effect as multiplying by some power of two. Thus a
one bit shift multiplies by 2, a two bit shift by 4, a three bit shift by 8, and
so on. Since the total number of bits is fixed by the type this must throw
away the bits that are shifted off the lefthand end. Let’s look at an example.

short val = 136; // val holds 0b0000000010001000
short newVal = val << 2; // newVal is 0b0000001000100000

Since these are short values, each one has 16 bits. We started with 136
= 128 + 8. The shifting moves the upper 1 bit from bit 7 (128) to bit 9
(512) and the lower 1 bit from bit 3 (8) to bit 5 (32) so that the result is
512+32 = 544. This demonstrates the equivalence of the 2-bit left shift and
multiplication by 4 since 4 * 136 = 544.

One of the most common uses of a left shift operation is to turn a bit number
into a value. For example, if we want to make the 8-bit value that has only
bit 6 set to 1 and all other bits left as zero then we can make that number
like this

char bit6 = 1 << 6; // 0b00000001<< 6 = 0b01000000

Right Shift

The right shift operator is a little more complicated. It behaves slightly
differently with signed and unsigned numbers.

Unsigned numbers are easy. The newly created high-order bits at the left
hand end of the number are just filled with zeros, exactly as you would
expect from the behavior of the left shift.

That would cause problems with signed numbers. Remember that the sign
of signed number depends on its top bit. If the top is 0 then the number is
positive. If the top bit is a 1 then the number is negative. The right shift
operator has been designed so that it does not alter the sign of the number
on which it operates. This means that instead of always filling in the high
bits with zeros, the signed-number right shift fills them in with copies of the
high bit.
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AND
Left Right AND
bit bit result
0 0 0
0 1 0
1 0 0
1 1 1

The end result of the signed/unsigned rules is that the right shift has exactly
the same effect as dividing by some power of two. A one bit right shift
divides by 2, a two bit shift by 4, a three bit shift by 8, and so on. This time
is is the old low-order bits that are thrown away. Let’s look at an example.

short val = 136; // val holds 0b0000000010001000
short newVal = val >> 5; // newVal is 0b0000000000000100

Again, we started with 136 = 128 + 8. This time, the shift moved the upper
1 bit from bit 7 (128) to bit 2 (4) and the lower 1 bit has been shifted off
into oblivion. We see that 136 >> 5 gives the same result as 136 / 32 = 4.

Logical NOT

I know that it is out of order, but NOT is the simplest of the logic operations
so maybe it is sense to look at it soon. This simply reverses the state of
every bit in the value. It is important to distinguish between negating a
value and complementing it. The unary minus operation changes the sign of
a number, which changes most of the bits of a number, but preserves the
magnitude in the 2s complement notation. The NOT operation just flips
every bit. It does not make sense for a value that is thought of as a number
but it is very useful for finding the complement of a bit pattern.

For example, if we have the bit pattern 0x0f, that (see below) is useful for
extracting the bottom 4 bits of an 8-bit number, then its complement is
0xf0, that is

~0x0f = 0xf0

This pattern removes the bottom 4 bits and keeps the top 4. The exact
opposite of the original.

Logical AND

The logical AND operation combines two single bits using the rule that the
result is true only if BOTH inputs are true. We often represent this with a
table of all the possible inputs and outputs called a truth table, as shown
on the right.

The logical AND operator, like the rest of the logical operators, works
simultaneously on all the bits of its operands. This means that the two
operands must be the same size. If one operand is smaller then C expands
it by padding it on the left with zeros to match the larger.

The magic of the AND operation is that it can pick a subset of the bits from
a word using a mask, a bit pattern with 1s in all the places you want to
keep and 0s in all the places you want to ignore. We will see one example
of this later in this chapter, where we will use a mask to extract the four
lowest bits from a number.
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OR
Left Right OR
bit bit result
0 0 0
0 1 1
1 0 1
1 1 1

Let’s see how this works. Let’s assume that we start with a 16-bit short and
that we want to extract only the lowest four bits, the lowest hex nibble. In
that case we start with a mask that has 0s in all the upper bits and 1s in
just the four lower bits. That gives us a mask value

0x000F = 0b0000 0000 0000 1111

Now we AND this with a number and see the effect. Consider the initial
value 0x13B7. Then we have, since 0x13B7 = 0b0001 0011 1011 0111,

0x13B7 & 0x000F = 0b0001 0011 1011 0111
& 0b0000 0000 0000 1111
0b0000 0000 0000 7111 = 0x0007

and we have, as promised, extracted only the bottom hex nibble.

We can use the AND operation to force some bits in a word to 0 while
leaving all the rest untouched. For example, we might force bits 5 and 6 of
an 8-bit value to zero with the mask 0b1001 1111 = 0x9F. For example, if
we start with the value 0xFE and we AND it with this mask then we get

0xFE & 0x9F = 0b1111 1110
& 0b1001 1111
0b1001 1110 = 0x9E

Inclusive OR

We use the English word OR to represent two different logical operations.
The first is known as the inclusive OR. It produces a true result when either
or both of its inputs are true. The output is false only when both inputs are
false. We see the truth table in the figure on the left.

Just as the AND operation can be used to clear some bits of a pattern
without altering the rest, so the OR operation can set some bits without
altering others. If we put a 1 bit in the mask then there will be a 1 in the
result regardless of the original value. Where we have a 0 bit in the mask,
that bit will just be copied into the result. So I can set bits 0 and 5 of a
byte by ORing it with the mask 0b0010 0001 = 0x22. For example

0x55 | 0x22 = 0b0101 0101
| 0b0010 0001
0b0111 0101 = 0x75

Here we see the difference between addition and the OR operation. If we
added the value and the mask then there would be a carry out of the bottom
bit and several bits in the result would be modified by one bit in the mask.
Because OR treats each bit position separately this does not happen. We
just end up with the original value with a couple of bits that we are assured
are now 1.
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XOR
Left Right OR
bit bit result
0 0 0
0 1 1
1 0 1
1 1 0

Exclusive OR

This is the other form of OR. It is slightly more usual to mean this in
English. It represents a choice; either one thing or the other but not both.
Because the English word is ambiguous, logic uses the word XOR (usually
pronounced ecks-or) for this operation to distinguish it from the inclusive
OR. This one is quite clever. If you look carefully at the truth table then
you will see that it contains two relations that we can write with equations

A XOR 0 = A
A XOR 1 = !A

where ! is the logical not operation. This means that we can change the
state of one or more bits in a word without knowing their state. For example,
I might have a variable LightOn that tells me whether a light is on or off.
So long as I use 0 to mean off and 1 to mean on, I can change the state of
the variable with the single statement

LightOn = LightOn ^ 1;

Now light will have changed state. This is a lot easier than the more
straightforward

if (LightOn == true) {
LightOn = false;

} else {
LightOn = true;

}

Useful Tricks with Logic Operators

These logical operators are very useful for affecting some bits of a value
without altering others. This is a particularly powerful trick for working
with the Special Registers that control the inner workings of the on-chip
peripherals. It is normal to have each bit, or small set of bits, have a different
meaning and function, quite independent of the other bits in the same word.
Thus, it is common to wish to alter some bits while leaving the rest alone.

The simplest cases are those that set a specific set bits to zero or that set
some bits to 1. For example, we can set the bottom three bits of a value to
zero using the AND operator. Whatever the value of SReg is, the following
code will zero the bottom 3 bits and leave the rest untouched.

SReg = SReg & 0xF8;

The numeric argument, called the mask, has zeros in those bits that we
which to clear and ones on the others, 0xF8 = %11111000. Because it is the
bottom bits that are important, you might also see this written

reg = reg & ~0x07;
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In these comparisons it is important
that A and B are either both signed
values or both unsigned values. Un-
expected things happen if you mix
signed and unsigned values. For ex-
ample, depending on the implemen-
tation, you might easily find that -1
was greater than 10!

In this and in the other condi-
tional and iteration statements the
parentheses are required, a part of
the syntax of the statement. They
must be there.

As usual, the block does not
need a semi-colon after it, although
a simple statement would.

using the unary NOT operator to make the mask out of its complement.

Similarly, we can use the OR operator to set one or more bits of a register
to 1 without altering the other bits. This time we put 1s in the bits that we
wish to set and 0s in the others. Thus

SReg1 = SReg1 | 0x02;

will set bit 1 of the memory location SReg1.

In the most complex case we combine these. For example, to set bits 3, 4,
and 5 of SReg3 to the bit pattern 101 we can use the following

SReg3 = (SReg3 & 0b1100011) | 0b0010100;

6.1.3 Conditional Statements

Conditional statements allow our programs to make decisions as they run.
At the heart of all conditional statements is some kind of logical test, a
true/false question, usually built from the comparison operators and logical
operators described above.

In a flowchart, a conditional statement is shown as a diamond shaped box or
as a box with pointed ends (Figure 6.1). The box has one entrance (usually
from the top) and two exits marked true and false, or yes and no, or y and
n. If the condition is satisfied then the true (yes, y) exit is taken. Otherwise
the false (no, n) exit is taken.

Figure 6.1

In C, a conditional statement begins with the keyword “if” and may take
several forms. The simplest form is

if (<conditional expression>) <statement>;

It is relatively unusual to use a simple statement as the body of an if and
I strongly prefer to always use a compound statement, or block. Thus the
preferred form of the simple if statement is

if ( <conditional expression\> ) {
<statements making the body of the if>

}

In this case the body of the loop is only executed if the expression evaluates
as true. If the expression is false then that whole block of statements is
skipped over completely.
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There is an extended version of the if that has two bodies, one to execute
if the test passes and one to execute if the test fails. Again, each of the
bodies could be a simple statement but I strongly prefer the use of blocks
for bodies. So the extended if has the form

if ( <conditional expression> ) {
<list of statements to execute when true>

} else {
<list of statements to execute when false>

}

In such a statement, we first evaluate the condition and then take one of
two paths. In the first form of the statement, the true path leads us to the
list of statements inside the curly brackets and the false path takes us to
the next instruction after the closing bracket. In the second form, both true
and false paths have their own lists of statements. As soon as we reach the
end of the list, we go to the next statement after the closing curly bracket
of the else clause. Thus only one of the two lists of statements is executed
and the other has no effect.

For example the following C code and flowchart (Figure 6.2) examine the
value in myNumber (a short) and print a message telling us whether or not
the value will fit in a single signed byte.

if (myNumber < -128) {
Serial.println("Your number is too small to fit in 1 byte.");

} else {
if ((myNumber > 127) {

Serial.println("Your number is too big to fit in 1 byte.");
} else {

Serial.print("Your number will fit in 1 byte.");
}

}

Figure 6.2

You can concatenate if-else statements to form longer tests where exactly
one of a set of bodies will be executed. You get chains of ifs like this.

if ( <test1> ) {
<body 1>;
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While the parentheses that we
use to make expressions more read-
able are completely optional, the
parentheses in the while loop are
required by the syntax of the lan-
guage. They are NOT optional.

} else if ( <test2> ) {
<body2\>;

} else if ( <test3> ) {
<body3>;

} else {
<last body>;

}

where there could be as many else-if pieces as you need and there need not
be a final else.
Example 6.1.1
One common way to design the software running on a scientific instrument uses a simple control
language. An external computer, usually a PC, uses a serial link to talk to the instrument using
strings of characters. The software on the instrument looks at the first character of the string to
decide how to interpret the rest of the string. Thus, if the first character of the string coming
from the PC is put in the variable ch, a piece of code like the following is very common.
if (ch == `a') {

<do the work for command a>;
} else if (ch == `d') {

<code to do the work for command d>;
} else if (ch == `n') {

<code for command n>;
} else {

<}code to tell the caller there is no such command>;
}

6.2 Iteration

Iteration is the act of doing something again and again. It is one of the
fundamental concepts that we use to make long programs out of short
statements. We shall use four basic kinds of iteration, all slight variations
on the idea of doing the same thing many times in a controlled way.

6.2.1 The while loop

We have already met the simplest loop construct in C, the while loop, a loop
that executes while some condition remains true. The while loop actually
comes in two forms. In the form that we have already met we test the
condition just before we execute the body of the loop. In the other form
we test the condition after we have executed the body. The key difference
between these two forms is that the second form always executes its body at
least once. The first form will never execute if the test fails on the first try.

In a flowchart, we make these loops by putting a conditional box inside the
loop. That gives us the two forms of Figure 6.3.

In C we use the while and do keywords to build these loops. The first kind
of loop has the form
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Figure 6.3: While Loop Flow Charts

Figure 6.4: For Loop
Flow Chart

while ( <conditional expression> ) {
<body of the loop>;

}

and executes the statement in the body so long as the test is true. This form
may or may not execute the loop body depending on the result of the test.

The second form moves the while to the end to show that the test is now
performed after the body is executed.

do {
<body of loop>

} while ( <conditional expression> );

This form of the loop is guaranteed to execute the body of the loop at least
once, since the body executes before the test is first performed.
Example 6.2.1
As we shall see in later chapters, a computer sometimes needs to wait for something to happen
in the outside world. For example, if a program interacts with a user through a keyboard then
the program will often want to wait until a key is ready. Energia provides the Serial.available()
command that returns the number of characters ready to be read from the serial port. The
following code will sit in a while loop waiting until there is a character ready for us to read. Once
one is ready we.can read it in and echo it back to the port so that the user can see what they
typed.

char ch;
while (Serial.available() == 0) {
}
ch = Serial.read(); // Read character into ch

Note that the body of the while loop is empty. The loop does nothing while it is waiting.
Another way to write this which does exactly the same thing is.

char ch;
while (Serial.available() == 0); // Idle while no characters}
ch = Serial.read(); // Read character into ch

6.2.2 The for loop

Many computer languages provide a special form for the counting loop, a
loop that must execute a fixed number of times. Such a loop can always be
constructed from a while loop, but it is common enough to have a special
form of its own. C provides a somewhat expanded version of the counting
loop called a for loop, which has the form
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for loop variables
C++ allows you to declare a new
value in the expression list of a for
loop. Such a new value only exists
during the lifetime of the for loop
and vanishes as soon as the loop
exits. Thus if you want to access
the value of the variable after the
loop then you must use a variable
declared elsewhere.
I recommend sticking to variables
declared elsewhere until you get
really comfortable with program-
ming. Then you can make your own
choices.

Here we have the common case
that <step> == 1 so I have used
the <var>++. In such a case each
of these loops will execute exactly
<limit> times In this case we get
exactly 100 interations. This piece
of code finds the average of the num-
bers from 1 to 100.

for ([<var> = <start>];[ <test>]; [<change var>]) {
<body of loop>

}

where <var> is the variable that counts through the loop, <start> is its
initial value, <test> is a test for the end of the loop, and <change var> is a
statement to go from one value of <var> to the next. The body is executed
so long as the test is true. The control flow is a little fiddly and is best
understood with a flowchart.

Here we can see that the test is made once before we enter the body of the
loop and then again after every trip through the loop. This means that the
loop will not be executed at all if the test fails that first time.

This is a rather general form that allows us to construct some rather fancy
loops but more than 90 % of the time we just want var to count up from
zero or down to zero by some constant step. In those cases we get the forms

for (<var>=0; <var> '<' <limit>; <var> += <step>) {
<body of loop>;

}

and

for (<var>=<limit>; <var> '>' 0; <var> -= <step>) {
<body of loop>;

}

In the really common cases when the step is one we can replace the fancy
<var> += <step> by the simpler <var>++ form, or <var>– for the decrement
case.
Example 6.2.2

short sum = 0;
short num, count=0;
for (num=0; num < 100; num++) {

sum += num;
count += 1;

}
short average = sum / count;

6.2.3 The infinite loop

So far in C we have created an infinite loop with a while loop that cannot
end,

while (true) {
// Body of the loop

}

A common alternative is a special form of the for loop,
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Figure 6.5: Flowchart
for Blinking an LED

for (;;) {
// Body of the loop

}

Some C compilers have special code for this for version that maximizes the
speed of the loop, so that it is probably the preferred form.
Example 6.2.3
Here is a simple example of an infinite loop program in both C and flowchart form (Figure 6.5).
The program blinks an LED on and off. We are using an LED connected to Port B bit 1.

pinMode(PB_1, OUTPUT); // Make port B bit 1 an output
for (;;) {

digitalWrite(PB_1, HIGH); // Turn the bit, and LED, on.
delay(100); // Wait 100mS}
digitalWrite(PB_1, LOW); // Turn bit and LED off
delay}(100); // Wait 0.1 seconds.

} // End for loop. Never get past here.
I have made a common simplification in the flowchart. Instead of writing each of the body
statements (corresponding to lines 2-5 in the pseudocode) in its own box, I have grouped them
in a single box. It saves a lot of box drawing.

6.2.4 Leaving early?

Sometimes you need to be able to get out of a loop before reaching the
normal end. For example, you could scan through all the characters in a line
looking for a special character. The loop would normally terminate when
it ran out of characters but there is no point in going on looking once you
have found what you seek. C provides two different ways to change what
you are doing without working through the body of a loop.

The break command stops the loop and takes you to the next statement
outside the loop. This is much the most common way to end a loop early.
This would be the solution to our previous example. So if we had a string of
characters (see below) in an array called buffer we could search through it
for the first occurrence of the character ‘*’ like this

int index, foundIndex = -1;
for (index = 0; buffer[index] != 0;++index) {

if (buffer[index] == '*') {
foundIndex = index;
break;

}
}
// Come here when either the loop ends or we
// found the char. foundIndex will be -1 if
// loop ended but will be the index if we
// found the `*'.

More rarely, we want to stop processing the rest of this trip round the body
of a loop and skip to the next regular time round. We can do this with the
continue command. The general format is something like this
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for (index = 0; index > 100; ++index) {
if ( <test> ) { // Test for some condition

continue; // and dump the rest of the
} // loop if it is met.

//
// Do something long and complicated
//
...

}

In this example, suppose that we have just started the third trip round
the loop, when index has the value 2, and we decide that this one is not
worth bothering with. The continue statement skips over the rest of the
processing in the loop, takes us to back the point where the test is made,
and then takes us round the loop again, this time with index having the
value 3.

6.3 Summary

C represents truth values as numbers with the meanings:-

zero → false
non-zero → true.

Conditional expressions produce truth values as results using the operators:-

> greater than
>= greater than or equal to
== equal to
<= less than or equal to
< less than
!= not equal to

Individual conditional expressions can be combined with the logical
operators:-

&& logical AND
|| logical OR
! logical NOT

which have lower precedence than the comparisons.

C also provides a full set of bitwise logical operators:-

<< left shift
>> right shift
& logical AND
| inclusive OR
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ˆ exclusive XOR
~ NOT.

These act on their arguments one bit at a time to yield a bit pattern as a
result.

C provides a general conditional statement that is quite flexible:-

if ( <conditional expression> ) {
<list of statements to execute when true>

} else {
<list of statements to execute when false>

}

Here the square brackets indicate optional elements. Since the if is itself a
statement this means that you can form extended chains of if like this

if ( <test1> ) {
<body 1>;

} else if ( <test2> ) {
<body2>;

} else if ( <test3> ) {
<body3>;

} else {
<last body>;

}

where there could be as many else-if pieces as you need and there need not
be a final else.

C provides a wide variety of iteration statements. The two forms of the
while loop differ in when they perform the test.

while ( <conditional expression> ) {
<body of the loop>;

}

and

do {
<body of loop>

} while ( <conditional expression> );

The body of the second form will be executed at least once, while the first
form could skip over its body altogether.

The for statement is a special form that combines initialization, test, and
advance state into one shorthand syntax.

for ([<var> = <start>];[ <test>]; [<change var>]) {
<body of loop>

}
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This is exactly equivalent to

<var> = <start>;
while (<test>)) {

< body of loop >
<change var>;

}

The most common forms of the for loop count a single variable up or down
a fixed number of times.

for (<var>=0; <var> '<' <limit>; <var> += <step>) {
<body of loop>;

}

and

for (<var>=<limit>; <var> '>' 0; <var> -= <step>) {
<body of loop>;

}

C provides two statements to alter the flow of loops.

break;

stops execution of the loop and takes you to the next statement after the
end of the loop.

continue;

prematurely ends this trip round the loop and starts the next trip at the
either the test (while loops) or the variable increment (for loops).



GPIO
The TM4C123G documentation usu-
ally refers to the digital inputs and
outputs as GPIOs, General Purpose
Input and Outputs, and also uses
talks about whole ports as GPIOs.
Thus another way to refer to PortA
is as GPIOA. You should be familiar
with both notations.

Chapter 7

Digital I/O and the
TM4C123GXL LaunchPad

7.1 Introduction

Back in Chapter 5 we saw that the TM4C123G is a complex chip with a large
set of on-chip peripherals in addition to the CPU and memory. Together,
those peripherals form the connection between the abstract world of the
programs we write and the concrete world of the circuits to which we connect
the computer. The peripherals are the computer’s senses and its limbs.
Through its input wires it receives its impression of the outside world. With
its output wires it works its will in that world. This chapter takes a more
detailed look ways to use digital I/O with Energia.

Internally the TM4C123G chip groups individual I/Os into blocks called
ports. Energia and Arduino do not really recognize this organization and
like to think of them as individual signals each associated with a pin. Thus,
the Energia functions expect to refer to the pins by their, rather arbitrary,
pin number. The numbers in question are the numbers of the pins in the
interface connectors on the LaunchPad. You can see the relationship between
Energia pin number and the GPIO signal name in Figure 7.1 below.

The Energia pin numbers are the ones on the connectors, J1-J4. Thus, the
internal number to refer to port F pin 1 is 30. We can usually get away
without using these numbers directly because Energia provides names for
the constants. Thus we usually refer to port F pin 1 as PF_1, but this is
just a name that is defined to have the value 30.

For reference, is a table to convert pin names to pin numbers and is a table
to convert pin numbers to pin names.

103
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Figure 7.1: LaunchPad Pin Numbering

As mentioned above, we usually do
not use the pin numbers directly.
Instead, we use the more friendly
names provided by Energia.

7.2 A Single Digital I/O

A single digital I/O is a signal that can take on only one of two states, HIGH
(3.3V) or LOW (0V). If the voltage is controlled by the external circuitry
then the I/O should be programmed to be an INPUT and then programs
can test its state. If the voltage is controlled by the TM4C123G and is to
affect the state of the external world then the I/O should be programmed to
be an OUTPUT and then programs can set its state. We set the direction
of a signal, its mode, with the pinMode command.

pinMode(<pinNo>, <mode>)
Sets the mode of a single digital signal. The signal is referred to by its pin
number in the LaunchPad connectors. It is an integer between 1 and 40.

The mode is one of the special constants INPUT, OUTPUT, IN-
PUT_PULLUP, or INPUT_PULLDOWN. We have already met the
self-explanatory INPUT and OUTPUT modes. The other two modes are
modifications of INPUT.

INPUT
In this mode the pin appears to the outside world as if it were a very high
(>1M Ohm) resistor to ground. The voltage is determined by the external
circuitry and the state can be read.

INPUT_PULLDOWN
As noted above, the normal INPUT mode makes the pin look like a huge
resistor to ground. Sometimes it is useful to make the input look like a
smaller resistor to ground. In the INPUT_PULLDOWN mode the input
looks like a 10k resistor to ground so that it will tend to pull the input
voltage down to ground unless the external circuitry pulls it up harder. We
will see some uses for this when we look at how to connect switches to inputs.
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Well, no immediate effect.
If you set the state of an input and
then later change the mode to OUT-
PUT then the signal will go to the
previously set state.

The Blink example in section 6.2.3
showed how to turn on and off such
an LED.

INPUT_PULLUP
This is sort of the opposite. Instead of looking like a resistor connected
to ground, this makes the input look like a 10k resistor connected to 3.3V.
Again, it is useful for wiring switches to inputs without additional circuitry.
As always, the progam can read the state of the pin and learn whether the
voltage is 0V (LOW) or 3.3V (HIGH).

OUTPUT
This, obviously, makes the pin into an output. Specifically, it makes it into
a standard CMOS output that is capable of sourcing or sinking 2mA of
current. That is not a lot. You can just about light a high-efficiency LED
with that much current but not much more. You pretty much always need
some kind of external switch (an FET) if you are to control anything more
demanding than a CMOS input.

It is perfectly legal to change the mode of a pin at any time but it is quite
rare. Most programs set the direction in the setup routine and leave it that
way. Once the mode is set then you can either write to the pin or read from
it.

digitalWrite(<pinNo>,<state>)
This forces the the signal either to 3.3V if state is HIGH or to 0V if state is
LOW. If the pin is configured as an input then this has no effect.

digitalRead(<pinNo>)
This queries the instantaneous state of the pin and return HIGH if the
voltage is near 3.3V and LOW if the voltage is near ground. It cannot return
any other value. If you read from a pin that is configured as an output then
you simply learn what value you wrote to the pin.

7.3 Using a Digital IO

Let’s look at some of the things that we can do with our I/O pins now that
we have them.

7.3.1 Driving a single LED

There are two different ways to drive a single LED, because there are two
different ways that you can connect the LED to the pin (Figure 7-3). Of
course on the TM4C123 you can only do this with a very high efficiency
LED since the pins cannot supply enough current to drive most older LEDs
directly.

The upper LED is connected, through a current limiting resistor, between
the port pin and the positive supply. In order to turn it on we must set the
port pin to 0, so that there is a voltage across the LED. A 1 on the port
will turn the LED off.
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Standard brightness LEDs are usu-
ally rated at 20mA drive current
so that driving them with only
2mA does not produce the brightest
LEDs. If we want more light then
we need either to used external LED
drivers, such as FETs, or to switch
to high-brightness LEDs that will
give more light for the same current.

Figure 7.3: Controlling an
FET

The lower LED is connected, again through a resistor, between the port pin
and ground. This time, a 1 turns the LED on and a 0 turns the LED off.

Figure 7.2: Driving an LED with a Port Pin

In either case, the resistor is there to limit the current flowing in the LED
when it is turned on. The turn-on voltage for an LED varies somewhat with
the color of the LED, but values around 2 V are typical. With a computer
running from a 3.3 V power supply this means that we can’t just connect
the LED directly to the pin. Far too much current will flow and the pin,
and probably the LED, will be damaged or destroyed. We need to include a
resistor to limit the current to a safe value.

With a 3.3V power supply and about 2 V across the LED we are left with
about 1.3V across the resistor meaning that we need a resistor value of 1.3
V/2 mA = 650 W.. The next standard value of 680 W is probably a good
choice and 750 W would be a conservative choice.

7.3.2 Driving a Higher Current Load

While we can find LEDs that will light up sufficiently with <2 mA of current
drive, there is not much else that you can turn on and off with that little
current. We can add an external FET switch or an external driver IC to
allow us to control something beefier.

The HIGH state output voltage of our chip is only 3.3V so that we can turn
on an FET with a threshold voltage in the 1-2V range. Our common 2N7000
FET is a reasonable choice. According to Figure 11-7 in the Electronics
volume, a 2N7000 can turn on about 50mA with a 3.3V gate drive. That is
enough to drive a couple of standard brightness LEDs or energize a small
relay. Figure 7.3 shows how to use an FET to allow us to turn on and off a
standard LED that draws about 10mA, far too much for the chip itself to
drive.

7.3.3 Reading a Switch.

The most common input task is reading the state of one or more switches.
One of the simplest ways to connect a single switch to a digital input is
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Figure 7.4: Reading a switch

As explained earlier, we do not even
have to provide an external pull-up
resistor if we enable the built-in pull-
ups for the input bits by setting the
pinMode to INPUT_PULLUP.

Figure 7.5: Switch Contact
Bounce

shown in Figure 7.4. We can obviously extend this to many switches.

When the switch is open, the resistor pulls the input wire up to the full
supply voltage, 3.3 V for our chip. So long as the pin is programmed to be
an input, a read of the port will see this bit as a logic 1.

When the switch is closed, the very low resistance of the switch pulls the
input wire down all the way to ground. A read of the port will show this bit
to be a logic 0.

We can test the value of the switch with the digitalRead command. For
example, if we connect a switch to bit 2 of port A then we can test the value
of the bit like this

if (digitalRead(PA_2) == LOW) {
// Come here if the button is pushed

} else {
// Come here when button is not pushed

}

In order to make testing the switch as transparent as possible, we might
choose to package this code up into a subroutine. For example,

int ReadSwitch() { // Returns true when button is pushed
if (digitalRead(PA_2) == LOW) {

return true;
}
return false;

}

Of course, both of these chunks of code assume that you have already made
sure that the port bit is set up as an input and that there is either an internal
or external pullup resistor.

7.3.4 De-bouncing switches

So long as we are only interested in whether the switch is open or closed,
and do not care what happens when it changes state, that is all there is
to reading a switch. However, if the behavior when the switch changes is
important then we must look more carefully at what happens when a switch
opens or closes. Many mechanical switches consist of two pieces of springy
metal that meet to close the switch and part to open it. The trouble with
springy pieces of metal is that they can bounce around when you open or
close the switch. So, instead of getting a clean rise from 0V to 5V when you
open the switch, you actually see something like Figure 7.5.

This contact bounce happens too fast for mere people to notice but it happens
extremely to a computer. The time scale is milliseconds and a TM4C123G
can test the value of a port thousands of times in 1 mS. Thus you can’t
just connect up a switch like this and hope to do something like count the
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number of times the switch is pressed. Each time the person puts her finger
on the button, or takes it off, the computer will see a random number of
on-off transitions. If we want to get a sensible answer out of the switch
then we must debounce the switch. It is possible to do this with hardware
but hardware costs money and a few extra instructions in a program cost
nothing. We need to debounce the switch in software.

One very nice way to handle this is to write a subroutine that tests the
switch and only returns when it is sure that the switch has gone high. It can
tell that the switch is really high if it reads the state twice, a mS or so apart,
and gets a 1 answer both times. Assuming that we have the ReadSwitch()
that we just wrote, here is the code.

void WaitForSwitchHi() {
int bit;
while (true) {

do {
bit = readSwitch();

} while (bit == 0);
delay(20);
bit = ReadSwitch();
if (bit == 1) return;

}
}

The program sits in a loop reading and re-reading the switch until it sees a
1. That one is either the start of a bounce or the start of a real high, so the
program waits a short time and tests the bit again. If the bit is still 1 then
it returns, happy that the switch is stable. If the bit is back to zero then
the first 1 was a bounce and could be ignored. You can easily adapt this
idea to detect falling edges or even 0-1-0 pulses.

7.4 The GPIO Port

So far we have treated the digital pins as completely separate entities. As
their names suggest, this is not the case. The pins are actually organized
inside the chip into groups called ports. A port is set of 8 digital I/Os that
are all connected to the same set of special registers. Basically, each pin
corresponds to a single bit in the registers. This means that the hardware
can change the state of all 8 bits of a single port simultaneously. There are
some occasions when this is extremely useful.

While it is true that each of the special registers has 8 bits, not all of those
bits are available for our use. Some are reserved for special uses by the
TM4C123G chip itself while others are used by the LaunchPad board and
are not brought to the connector pins. This is how a chip with 6 ports can
have only 45 I/O pins and then can be used on a LaunchPad that only
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Missing Pins
It turns out that some of the missing
pins are more hidden than missing.
In particular, pins PD4 and PD5 are
brought to pads next to the USB
port on the side of the board. It is
possible to solder pins to those pads
and gain the full use of Port D.
Pins PA0 and PA1 are not quite
as useful. They carry serial data
from the target chip to the debug-
ging chip so that we can use the
Serial commands in Energia. If we
don’t need Serial then we can reuse
PA0. PA1 is pretty much useless,
however, as it is connected to an
output pin on the debug chip so we
can’t really use it for anything else.

makes 35 of those pins available for our use. The following table shows the
fate of each bit in each port. Each entry shows either the LaunchPad pin
number, a LaunchPad signal name, or a blank for pins that don’t exist.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Port A 10 9 8 13 12 11 UART->USB
Port B 15 14 2 7 38 19 4 3
Port C 34 35 36 37 The ICDI debug pins
Port D 32 33 USB 26 25 24 23
Port E 6 5 29 28 27 18
Port F 31 39 40 30 17

Table 7.1: Launch Pan Pin Numbers

Interestingly, while the Wiring library that was the predecessor of Arduino
provides support for access to all the pins in a port at once, that support
was left out of Arduino and thus out of Energia. I have provided the missing
routines so that you can use them in just the same way as other Energia
routines.

portMode(<port>, <mode>)
This is the whole port equivalent of pinMode. It allows you to set the mode
of all the pins in a port at once. I have provided named constants for all the
ports that you can use for the first argument. The mode can be any of the
same constants that you can use in pinMode. Thus, we can make all the
pins of port B into output pins with the command

portMode(PORTA, OUTPUT);

Note that portMode knows about the missing pins in ports A and D thru F.
It is quite safe to say

portMode(PORTC, OUTPUT);

even though the bottom 4 bits are not available to you. Only the upper 4
bits will be affected.

It is perfectly possible to mix calls to pinMode and portMode. For example,
we could make the top 6 bits of port B into outputs and use the bottom two
bits as inputs with the three commands

portMode(PORTB, OUTPUT);
pinMode(PB\_0, INPUT);
pinMode(PB\_1, INPUT);

The portMode command makes all 8 bits of the port into outputs and then
the two pinMode commands switch individual bits to inputs. It is obviously
important to do the individual pins after the portMode since it must affect
all the bits the same way.

portWrite(<port>, <value>)
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While portMode and pinMode are nearly identical, portWrite is a little more
different than digitalWrite because it takes an 8-bit value as its second
argument. Remember that we want to set the state of eight individual bits
all at once. However, we very rarely want to set them all to the same value.
Thus we need to pass in a bit pattern, i.e. a number, to portWrite. This is
a place where binary numbers can make a lot of sense. For example, if we
want to turn on all the even number bits and turn off all the odd number
bits in port E then we could use the command

portWrite(PORTE, 0b10101010);

or either of the equivalent forms

portWrite(PORTE, 0xAA);
portWrite(PORTE, 170);

Remember that all values are represented inside the computer by bit patterns.
Binary, hex, and decimal are just conveniences that C++ provides to make
programming easier for us.

portRead(<port>)
This command reads all 8 bits of the port in a single operation and returns
their state as a bit pattern. For any bits that are configured as INPUTs of
any kind the bits returned will reflect the external voltages on the pins. For
any pins that are configured as OUTPUTs, portRead will just return the
values to which you set those pins.

7.4.1 Driving a 7-segment display

Our next example makes use of the ability to set a whole set of output pins
in one operation. We shall connect 7 bits of a single output port to the
LEDs of a 7-segment display and then make the display count continuously.

The LEDs in a typical display are not high-brightness types so we can’t
drive them directly. Instead we will let each port pin drive an FET switch
connected to an LED through a current limiting resistor. Since we need a
full 8-bit port, I have chosen to use port B. Figure 7.6 shows the circuit we
shall use.

Figure 7.6: Driving a 7-segment LED
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More Patterns
This same idea can be extended to
support as many patterns as you
would like. For example, it is easy
to extend the system to support dis-
play of Hex numbers by adding bit
patterns for the Hex digits, A, B, C,
D, E, and F. Though it is usual to
use a mixture of upper and lower
case to avoid confusion between dig-
its and numbers. Thus we usually
use the patterns A, b, C, d, E, and
F and we distinguish between the
b and the 6 by turning on bit ‘a’
in the 6 character but not in the b
character.

The seven-segment LED looks rather like a 14-pin IC but is really a lot
simpler. It just consists of 9 LEDs set into a plastic base. It would take 18
pins to bring out all of the connections to the LEDs so the manufacturer
connects together all the anodes or all the cathodes. For historical reasons,
common anode LEDs are easier to find than common cathode ones and we
shall use common anode LEDs for this example. As shown in Figure 7.7
below, the anodes of each LED are connected together on pin 14 and the
separate cathodes brought out to various other pins.

We connect the common anode, pin 14, to the +ve power supply as shown
in Figure 7.6 and then we can turn on any one of the LEDs by connecting
its cathode to ground through the current limiting resistor.

Now it is easy to turn on and off any segment in the display. All we have
to do is to program a 0 or a 1 into the appropriate bit in the port B data
register. A 1 in the register will turn the associated segment on by turning
on the FET. So, eg., the bit pattern 0b00000110 will turn segments b and c
on and turn all the others off, displaying the digit ‘1’.

Figure 7.7: Inside a 7-Segment LED

So how do we display the digit 0? Well, in a 0, segments a-f must all be
turned on while segment g must be turned off. That means that we need to
put a 1 in bits 0-5 while bit 6 is a 0. It does not matter what we put in bit
7 since it is not connected to an LED. So we can display a 0 by setting port
B = 0b00111111 = 0x3F.

We can derive a similar hex byte for each of the other 9 decimal digits. We
get this set of codes.

0 → 0x3F, 1 → 0x06, 2 → 0x5B, 3 → 0x4F, 4 → 0x66,

5 → 0x6D, 6 → 0x7D, 7 → 0x07, 8 → 0x7F, 9 → 0x67

All that our program has to do is to cycle through these values in order and
keep doing it forever. If we want to be able to see the numbers, then we
shall have to slow the program down and display each number for a little
while, say 1 second.

The really easy, if slightly klutzy, way to do this is to write 10 little segments,
one for each digit. Then we just string them together, something like this
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Figure 7.8: 4x3 Matrix of
Switches

void loop() {
Write code for `0' into port B
Wait 1 sec
Write code for `1' into port B
Wait 1 sec
...
...
Write code for `9' into port B
Wait 1 sec

}

This will work perfectly well and it will fit easily into the program memory
of our TM4C123G so there is nothing wrong with this solution. However, it
is not elegant. A much more elegant solution is to use a loop to send each
digit. If we arrange the digit codes in order in memory (like a string) then
we can step through the codes one a time, like this.

char code[10] = {0x3F,0x06,0x5B,0x4F,0x66,
0x6D,0x7D,0x07,0x7F,0x67};

void setup(void) {
portMode(PORTB, OUTPUT);

}

void loop(void) {
for(int index = 0; index < 10; index = index+1) {

portWrite(PORTB, code[index]); // Write current digit
delay(1000); // Wait for one second

}
}

I have used a for loop to step through the entire table in order and then
relied on the system to keep calling the loop routine so that the process
repeats forever.

7.4.2 Reading a Switch Matrix

If you have a large number of switches to read then you can easily run out
of I/O pins. For example, a standard desktop computer keyboard has more
than 100 keys, each of which is a switch. Rather than connect each key to
its own input pin and sit scanning through all the input pins we connect the
switches into a matrix, where each switch is connected to both an input
pin and an output pin instead of to an input pin and a fixed voltage. For
example, a telephone keypad is usually laid out as a matrix switch. Figure
7.8 shows 1 possible arrangement.

Here there are 12 switches connected to only 7 wires. The savings get larger
as the number of switches increases. For example, we could add another
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In general 2n wires can handle 2n

switches.

column of four switches to this matrix at a cost of only 1 more wire–16
switches on 8 wires. The secret to reading a switch matrix like this is to deal
with 1 row at a time. Instead of connecting the column wires, C1-C3, to
power supplies we shall connect them to three output pins and then we shall
connect the four row wires, R1-R4, to four input pins. Next, we have to
make sure that the inputs are pulled to a standard state even if no switches
are closed. Since all of the standard input ports have pull-up resistors built
in, this is easy.

Now we can read the states of the switches by examining them 1 column at
a time. We shall start with column C1. Since the switch-open state of each
row wire is a high voltage, we need to make sure that the unused columns,
C2 and C3, appear as high voltages whether the switches are closed or not.
Thus we pull C2 and C3 high. Now, to make C1 different we pull it low
by writing a 0 to that bit and then we read the state of the four row lines.
Everywhere there is an open switch we shall see a logic 1, everywhere there
is a closed switch we shall see a logic 0. Thus we can tell exactly which of
the switches 1, 4, 7, and * are closed by examining which bits are 0. By
repeating this for the other two columns, we can examine the state of all 12
switches.

There are several ways of reading such a switch matrix depending on whether
you want to record switch openings as well as switch closures and on whether
you need to be able to tell when several keys are pressed at once. For a
telephone keypad, you just want to know when a single key is pressed. In
this case the program can sit and scan through the matrix expecting that
almost all the time all the switches will be open. Occasionally someone
will push a button and then the routine can return a code describing the
particular button. Let us pursue this as an example.

We will connect the four row of wires to the four low-order bits of port B and
the three columns to bits 4-6 of port B, which we will program as outputs.
Then a routine to scan the switch until a single button is pushed will look
something like this.

set port B to 4-input/3-output bits
while (true) {

for (column = 1; column < 4; column = column + 1) {
clear current column output bit in port B
set other output bits in port B
read port B and mask to 4 bits
for (row = 1; row < 5; row = row + 1)

if (current bit is 0) return row & column number
}

}
}

There are two tricky steps in this code. The first is setting and clearing the
correct column bits. We somehow need to translate a column index into a
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Arrays
The square brackets after Strobe tell
C++ that this is to be an array vari-
able, a set of adjacent boxes with a
single name rather than just one box.
The list of values in curly brackets
tells C++ what values to put in each
of the boxes. We will learn more
about this in chapter 8.

bit-pattern. This is just like the task we faced in the LED problem and the
solution is the same, use an array. We build a 3-element array that holds
the three bit patterns 0b01100000, 0b01010000, and 0b00110000, and select
a value from that array with the column index.

The second tricky step is working our way through the switch values that
we read from port H. Here we again need to translate a row number into
a particular bit. We could do this the same way, with a second array, but
there is a better way to test each of the bits in a word in sequence. We can
use the shift operator to slide the bits, one at a time, into a variable where
we can test them. Here is a new version of the pseudocode with more of the
details made explicit.

unsigned char Strobe[3] = {0x60, 0x50, 0x30};

void setup(void) {
portMode(PORTB, INPUT); // Make them all inputs
pinMode(PTB_4, OUTPUT); // Then change the top 3
pinMode(PTB_5, OUTPUT);
pinMode(PTB_6, OUTPUT);

}

void loop(void) {
for (col = 0; col < 3; col = col+1) {

portWrite(PORTB, Strobe[column]); // Drive column
int switchVal = digitalRead(PORTB); // Read rows
for (row = 0; row < 4; row = row + 1) {

char newBit = (switchVal << row) & 0x01;
if (newBit == 0) {

return row & column info;
} // End if

} // End for (row}
} // End for (col}

} // End loop}

The only tricky piece of code here is the expression in line 8 that extracts the
bit of interest. switchVal >> row takes the bit pattern in switchVal and
shifts it right by row bits, leaving the bit of interest in the bottom bit. Then
the AND operation zeros out all the other bits of the number leaving us with
the value of just one bit, the bit of interest, which I placed into the newBit
variable. I could have used the expression directly in the if statement, but
this form is usually easier to debug. When you are in the debugger you can
examine the value in newBit to make sure that it is what you expect.

The last task before we produce a final C subroutine is to figure out how
to return the information. At the moment, we know where we are in the
switch matrix because we know the row and column numbers of the switch.
However, it would be nice to return 0x01 when the ‘1’ switch is pressed,
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0x02 when the ‘2’ switch is pressed and so on. We can return 0x0A for the
‘*’ switch and 0x0B for the ‘#’ switch (or we could pick any other unused
values). We can easily do this with another array. We can convert the
row/column pair into a unique index with the algorithm

index = column * number of rows + row

This is a general formula for converting a 2-D index into a matrix into a
single index into the array. All we have to do is to put the codes into the
array in the right order. That is easy, we just work up or down the columns
1 row at a time, depending on the order in which we wire the pins. Let us
say that we map

PortB:0 = R1, PortB:1 = R2, PortB:2 = R3, PortB:3 = R4,
PortB:4 = C1, PortB:5 = C2, PortB:6 = C3

Then when column == 0 and row == 0 we must be looking at the switch
at the intersection of C1 and R1, that is, at the ‘1’. When column == 0 and
row == 1 we are looking at the ‘4’ key. Following this pattern through we
get the following array.

int KeyCode[12] = [0x01, 0x04, 0x07, 0x0A,
0x02, 0x05, 0x08, 0x00,
0x03, 0x06, 0x09, 0x0B];

Here is the final version.

/*
* GetPhoneKey()
* This routine reads the state of 3x4 matrix switch
* connected to port B. The switch must be laid out}
* as follows C1 C2 C3
* R1 1 2 3
* R2 4 5 6
* R3 7 8 9
* R4 * 0 #
* R1 goes to PH0, R2 to PH1, R3 to PH2, and R4 to PH3.
* C1 comes from PH4, C2 comes from PH5, and C3 from PH6.
* The routine scans the matrix until it sees a key down,
* then returns the integer value of the key pressed with
* the * having value 10 and the # having value 11.
* Assumes PB_6, PB_5, and PB_4 are OUTPUTs and PB_0 to PB_3 are INPUTs.
* Brian Collett 1/24/2016
*/
/*
* Strobe array is used to turn on column strobes in correct
* sequence.
*/
unsigned char Strobe[3] = [0x60, 0x50, 0x30];
/*
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* KeyCode is used to translate a row and column index
* pair into the code for the switch.
*/
int KeyCode[12] = [0x01, 0x04, 0x07, 0x0A,

0x02, 0x05, 0x08, 0x00,
0x03, 0x06, 0x09, 0x0B];

void GetPhoneKey() {
char col, row;
while (true) {

for (col = 0; col < 3; col = col+1) {
portWrite(PORTB, Strobe[column]); // Drive column
int switchVal = portRead(PORTB); // Read rows
for (row = 0; row \textless{} 4; row = row + 1) {

char newBit = (switchVal << row) & 0x01;
if (newBit == 0) {

return KeyCode[col * 4 + row];
} // End if

} // End for (row
} // End for (col

} // End while
} // End GetPhoneKey

7.5 Digital Interrupts

So far we have seen the computer as a device that can follow a precise set
of directions to perform one or more tasks in a strictly sequential fashion.
The program may jump from one line to another using constructs such as if,
while, and for, but the code has always obeyed the basic principle that the
computer executes the lines in their pre-determined sequence. That is fine
for self-contained programs, but once we write programs that interact with
the world around them this simple behavior becomes a limitation.

7.5.1 Polling versus Interruption

An asynchronous event is an event that occurs when it feels like it rather
when told to occur by a program. Many such events arise outside the
computer and affect the computer through its peripherals. A few, such as a
timer expiring, are really under computer control—after all, the program
tells the timer when it should do something—but still appear asynchronous
to the program. It is like a person setting an alarm on her watch. She
controls when the alarm will occur, but does not then sit looking at the
clock and waiting for it. Instead she goes about her business and, at the
predetermined moment, is reminded by the alarm, which then appears as a
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An interrupt handler is a special
kind of subroutine which is called
by the hardware rather than by the
program. We shall see several inter-
rupt handlers in the course of this
chapter.

surprise, an asynchronous event.

There are two different ways for a computer to deal with asynchronous
events. The first is by polling and the second is with an interrupt.

The computer polls for an event by sitting in a loop and continually asking
“did it happen yet?” as we did in our ReadSwitch routine in Chapter 7. This
is the fastest way to respond to the event because you can act upon it as
soon as you detect it. So long as the computer is not trying to do anything
else, polling is the best way to deal with asynchronous events.

While polling makes use of the normal ability of the computer do a simple
repetitive task, an interrupt requires special hardware. The hardware must
stop the CPU in its steady procession through its instructions, to mark its
place, and go off to execute a completely different piece of code, called an
interrupt handler. This takes a little more time than polling, since there
is some overhead to save the current state of the program and to switch to
the new code. It is significantly more complex to program, but it offers huge
gains in flexibility as soon as the computer needs to do something else while
waiting for the event. Interrupts are the key to making a computer seem to
be able to do multiple things at once.
Example 7.5.1
Consider a simple traffic light program. Basic traffic lights are extremely easy to program. They
go through a fixed set of states at a regular rate. We can easily imagine connecting the lights to
some port bits to turn them on and off and then using the delay() routine to control the timing
of the steps.
Now imagine trying to add pedestrian call buttons to this system. One standard method is just to
use the red-red phase of the lights. If the call button has been pressed then the computer should
increase the duration of the red-red phase of the lights and possibly play with some cross/don’t
cross lights.
This is easy in a flow-chart but how do we handle the pedestrian call buttons in a real program?
The buttons provide a signal to the computer only while the person has their hand on the button.
The pedestrian wants to be able to push the button at any time during the cycle and have the
computer remember this at the next red-red part of the cycle. If we do the obvious thing of
testing the button at the start of each red-red cycle then the pedestrian will have to keep holding
the button down until the right moment or the computer will completely ignore them. Not a
good design. The only way to know about the state of the button at any time is to keep checking
the state. But the computer spends all its time in delay. So we would have to write a new version
of delay that mixed the job of waiting with the job of checking the button and saving somehow
(a global variable comes to mind) the information about whether the button was pushed. This
would require a complete rewrite of the traffic light program.

7.5.2 Interrupts and TM4C123G/Energia

All processors in the TM4C12x family provide hardware support for inter-
rupts from a variety of sources; external events, on-chip peripherals, and
even a software-initiated interrupt. The details of the supported interrupts
vary from peripheral to peripheral but all follow the same outline.

First one must make sure that the interrupt is able to occur. Most of
the individual kinds of interrupt have to be enabled separately, usually
as part of the process of setting up the associated peripheral hardware.
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Many peripherals have one or more interrupts associated with them and
each usually has a separate single-bit flag to enable it in one of the special
registers associated with the peripheral. For example, each of the digital
I/O pins can generate an interrupt when the external state of its individual
input pin changes.

In addition, there is a global switch, called the interrupt flag, that controls
whether interrupts are allowed to occur at all. Energia provides a pair
of commands that enable or disable interrupt processing. Under normal
circumstances interrupts are enabled by the time Energia runs your setup()
routine, as they are used to maintain the millisecond clock used by the
millis() and delay() commands. It is possible to disable the interrupt
handling for a short period with the command

noInterrupts();

and then to turn them back on again with the command

interrupts();{}

You would normally only do this to execute a few lines of code that absolutely
must run as a continuous block. This can happen when making to some of
the special registers for example.

Next there is the actual code to run when the interrupt occurs. This
interrupt handler code must be put into a special kind of subroutine which
must contain all the code to run for that interrupt. We normally try to keep
interrupt handlers as short as possible since the main program is halted
while they run. Energia actually takes care of some bookkeeping associated
with each interrupt and lets us write an ordinary subroutine to do the rest
of the work. This subroutine will be called by the actual interrupt handler
and must be declared to take no arguments and return no values. Thus it
must be declared like this:

void myHandler();

The last portion of the process connects the interrupt handler to the interrupt.
Energia provides the attachInterrupt function to make this easy, at least in
the case of the interrupts connected to the digital pins. You pass the number
of the (input) pin you want to use, the name of the interrupt subroutine,
and a constant that tells it when to to recognize an interrupt.

Here is a summary of the structure of a simple program that uses one or
more interrupts.

• Declare any globals to share info.

• Declare, define, and name the handler subroutine(s). They may change
values of globals. In setup()

– Define your inputs and outputs as usual.
– Connect your handler subroutines to their interrupts.
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Nested Interrupts
Because the hardware sets the in-
terrupt flag before it starts to run
an interrupt handler, we don’t have
to worry about an interrupt handler
itself being interrupted. It is per-
fectly possible for the handler to re-
enable interrupts which would then
mean that on handler could inter-
rupt another. An interrupt that oc-
curs during processing of another in-
terrupt is called a Nested Interrupt.
ARM processors provide extensive
support nested for nested interrupts
but I consider them an advanced
technique and will not discuss them
further.

• In loop()

• Do using your usual processing. You can check the globals to see if an
interrupt has happened.

7.5.3 Handling Interrupts.

When an interrupt occurs, the CPU saves the current state and transfers
control to the address given in a piece of program memory called the vector
table. It is up to Energia to make sure that the correct addresses are in the
table and that each points to an interrupt handler that is suitable for that
interrupt.

As described above, the interrupt handler may do some housekeeping but
then it looks to see if the main program has defined a handler subroutine.
If one exists then the subroutine is called. While that subroutine runs the
main program is halted and no other interrupt can take place, so it is a good
idea to keep interrupt handlers as short as possible. They should usually do
the minimum amount of work to service the hardware and save information
for the main program to act on.

When the hardware starts executing an interrupt handler it first adjusts the
interrupt flag so that no further interrupts can occur. In addition, many of
the peripheral systems take additional care to prevent unintended multiple
interrupts. Most of them set a flag in one of their special registers to prevent
all further interrupts of the same type. Thus, most handlers must contain
code to clear their these flag.

7.5.4 Installing an Interrupt Subroutine

As mentioned earlier, Energia provides a standard way for us to install the
most common type of interrupt subroutine. Each one of the digital I/O pins
has the capability to generate an interrupt when its state changes. Usually,
this ability is turned off but we can turn it on for a particular pin and specify
both when the interrupt should be taken and what to do about it with the
attachInterrupt function.

Interrupt Modes

The digital pin interrupts can be set to occur when some kind of change
occurs to the state of the affected pin. Three kinds of change are possible.

1. The interrupt can be set to happen when the pin goes from LOW to
HIGH. This is called a RISING interrupt.

2. The interrupt can be set to happen when the pin goes from HIGH to
LOW. This is called a FALLING interrupt.
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It is possible to enable interrupts
for a pin that is set to OUTPUT.
In that case the interrupt will occur
when the program makes the appro-
priate change in the pin state. This
is a very weird thing to do!

An additional benefit of the global
trick is seen in the traffic light case.
There it does not matter if the
switch that we are using suffers from
switch bounce. If the interrupt is
called several times within a single
traffic light cycle then several calls
function exactly the same as one;
they set the global.

3. The interrupt can be set to happen when the state of the pin makes
either kind of change. This is called a CHANGE interrupt.

Normally, we want interrupts to occur as the result of changes external to
the chip. Thus any pin that is used to generate interrupts should first be
made into an input.

attachInterrupt(<pinNo>, <handler>, <mode>)

The attachInterrupt routine takes care of all the behind-the-scenes work
needed to tell the pin to support interrupts and under what conditions they
should be taken and then it arranges that the appropriate handler subroutine
will be called. It is very simple to use and hides from the user the rather
large amount of work needed to make all this happen.
Example 7.5.2
The digital interrupts allow us to monitor switches at the same time that a main program is doing
its own job. The LaunchPad board has a three-colour LED connected to Port F pins 1, 2 and 3,
and two switches, connected to Port F pins 4 and 0. We can demonstrate the interrupt capability
with a main program that flashes the LEDs in clearly recognizable pattern and use an interrupt
to monitor SW1. When SW1 is pressed, the interrupt code will alter the pattern.
The main trick to notice is the use of a global variable to communicate between the main program
and the interrupt handler. Since globals are visible to all subroutines and the interrupt is, from
C++’s point of view, just another subroutine, this is the standard way to share information
between the two different kinds of code.
/*
* Interrupt Demo
* Blinks the LED in either red or green at 2 flashes per
* second. Every time SW1 is pressed the colour changes.
* Brian Collett 2/6/16
*/
int SW1 = PF_4;
int RedLED = PF_1;
int GreenLED = PF_3;
int NextColour = RedLED;
//
// This is called when SW1 is pressed. It swaps the LEDs;
// switching from red to green or green to red.
//
void HandleSwitch() \{

if (NextColour == RedLED) \{
NextColour = GreenLED;
} else {
NextColour = RedLED;
}

}
void setup()
{

// LEDs need to be outputs, SW1 input and interrupt:
pinMode(SW1, INPUT_PULLUP);
pinMode(RedLED, OUTPUT);
pinMode(GreenLED, OUTPUT);
attachInterrupt(SW1, HandleSwitch, FALLING);

}
void loop()
{

// Blink the current LED:
int colour = NextColour;
digitalWrite(colour, HIGH);
delay(100);
digitalWrite(colour, LOW);
delay(100);

}
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You must include the Ports library
if you want to use the commands to
access complete ports.

Note that there is no attempt to de-bounce the switches so a ‘single’ press may advance the
pattern more than one step.

7.6 Summary

The simplest form of communication between a computer and the world is the
digital I/O bit. The TM4C123GXL LaunchPad provides 35 such pins spread
over 6 ports. However, almost all of the IO pins have alternate functions and
will not be available as general-purpose digital IO if the alternate function
is needed.

Each port appears internally as a set of memory locations in the special
register area. Bit patterns values written to those memory locations either
affect the working of the pins or appear as voltages on those pins that are
configured as outputs. Data read from the location reflect the voltage present
on those pins that are configures as inputs. We normally do not need to
access the special registers directly as Energia provides routines to make
digital I/O easy.

Every IO pin can be configured as either an input or an output pin. The
direction is set for individual pins with the pinMode command and for all
the pins in a port with the portMode command. Special forms of the input
mode, INPUT_PULLUP and INPUT_PULLDOWN make it easier to connect simple
switches to inputs.

You first select the direction of each I/O pin using pinMode. Then you
can alter the values on the output pins by setting them HIGH or LOW with
digitalWrite and can find the values on the input pins by reading them
with digitalRead.

If a port is programmed so that some bits are input bits and some bits
are output bits then writing to the port will alter only those pins that are
programmed as outputs. The values of the other bits will be lost. Any bits
programmed as inputs will return the values according to the voltages on
the pins.

Interrupts provide a way for a program to respond to asynchronous external
events. The TM4C processors support interrupts on every one of their digital
I/O pins. Energia allows us to enable such interrupts and install handlers
for them with the attachInterrupt command. Each interrupt can be set
to happen when the signal goes from LOW to HIGH (RISING), goes from
HIGH to LOW (FALLING), and when the signal changes state (CHANGE).
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Exercises

1. Write a subroutine to write single hex digits onto a 7-segment LED
connected to the lower 7 bits of Port B. The routine should take a
4-bit number in accumulator A and show that digit on the LED.

2. Write a program to send a digital ramp out of port B. It should send
the numbers from 0-0xFF out of port B as fast as possible and keep
doing it for ever.

3. The technique that we used in the matrix switch program, using one
set of bits to select one row and a second set to interface to the columns,
can be adapted to drive multiple 7-segment LEDs using only 1 bit
per LED in addition to the 7-bits to drive segments. We connect all
the segment a’s to one pin, all the segment b’s to another and so
on and then use bits from another port to turn on the anode drive
to one complete LED at a time. Then our program rapidly cycles
through, turning on an LED and turning on the bits that we want
to see before turning that one off and going to the next LED. If we
do this fast enough then the eye won’t notice that the LEDs blink.
Write a program to count on 2 LEDs connected with port B driving
the segments (0 means turn bit on) and two lines from port A driving
the power to the individual LEDs.

4. Write a modified version of the interrupt demonstration program that
switches between all three colors of LED when SW1 is pressed.



In mathematical terms our ordinary
variables are like scalars and our ar-
rays are like vectors and matrices.

Figure 8.1: Array Storage

Chapter 8

Variables in C++
Revisited

We have seen that C++ uses the abstract idea of a variable to provide a
view of memory that is matched to the problem rather than to the hardware.
From the hardware point of view all memory locations are the same. From
the programmer’s point of a view an integer used to count widgets on a
conveyor belt is a totally different kind of object from a character read from
a keyboard.

So far we have encountered variables that hold a single object throughout
the lifetime of a single procedure. In this chapter we shall explore some
of the more sophisticated types of variables that C++ provides: arrays, to
store many related objects, globals and statics, to share information between
procedures and from one invocation to another, and pointers, which hold
addresses of other variables.

8.1 Arrays

Simple variables are designed for holding single, unique objects. Sometimes
we have to deal with collections of similar objects such as the letters in a
string or the values in a table. We cannot hold such objects in a single
memory location and so cannot hold them in a single simple variable. Instead
we must introduce the idea of an array, a collection of similar values grouped
together under a single name and accessed using a number as well as a name.
Where a simple variable is a named box that can hold one value, an array
variable is the name of a whole set of side-by-side boxes that are numbered
consecutively, starting from 0, as suggested in Figure 8.1.

We can access the value of one of the individual boxes that make up an
array variable by combining the name with an index thus: xval[4]. Such
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It is possible to be even more gen-
eral and declare an array with more
than one index, like a mathematical
matrix, but that is beyond the scope
of this book.

Larger computer systems normally
do provide a way to create such dy-
namic arrays using a system of point-
ers. Such a use is very rare in em-
bedded systems like ours.

Actually, C will let the index take
on any value at all but does not de-
fine what happens if the index is
too large (or too small) for the ar-
ray. In practice such an index will
reference a piece of memory that is
probably used for some other pur-
pose. Index errors like this are the
primary cause of security vulnerabil-
ities in the desktop computer world
where they are often called buffer
overflows.

an array reference behaves exactly like a variable and can occur on either
side of an assignment. Thus, we can have statements like this

yval[4] = m * xval[4] + b;

which is part of filling in values that describe a straight line.

When we declare an array variable, we specify how many slots there are in
the array by putting the number of slots in square brackets after the variable
name. Thus, we would declare the integer array dataVals, with room for up
to 10 numbers, like this

int dataVals[10];

The general form of an array declaration is

<type> <name>[ <const expr> ] = { < list of constants> };

where the equals sign and everything beyond it are optional. The expression
in square brackets sets the number of elements (slots) in the variable and
the type determines the size and interpretation of each element. Because
the compiler has to know how much space to allot for the array, the number
of elements must be known when the compiler runs so the expression has to
be a constant that the compiler can evaluate. You can’t decide how big an
array is going to be when the program runs.

As usual, it is possible to assign starting values to an array variable. Obvi-
ously it will take more than one value to fill an array so C++ provides a
syntax for specifying any number of values (again, they must be constants)
by putting a list of values in curly braces (‘{‘ and ‘}’).

It is up to the programmer to make sure that there are exactly as many
initializing expressions as there are elements in the array or the compiler
will usually issue a warning.

The advantage of an array variable is that the index need not be a fixed
number. Instead, it can be any expression that evaluates to an integer
within the range of values in the array. Thus we can refer to element
myString[theIndex] where theIndex is any number in the range 0 to 9.
Using variable indices we can write programs that process every one of the
entries in an array in the same fashion without having to repeat the code.
Instead we just put the code in a loop and execute the same piece of code
many times.
Example 8.1.1
Here is a rather simple little example that finds the average of a set of numbers stored in an
array. In this case I put the numbers there at the start of the program but obviously this would
normally have happened at some earlier time in the program.

int data[10]={31,24,56,43,76,53,25,36,42,91};
int sum = 0; // Will accumulate the total
int i; // Our loop index
int average; // Will hold the answer
for (i = 0; i < 10; i = i + 1) {

sum = sum + data[i]; // new data element each time!
}
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There are two shift operators in C,
<< and >>, which perform left and
right shifts respectively. Each takes
two integer aguments and shifts its
left argument the number of bit po-
sitions in its right argument.

average = sum / i;
Note the trick of dividing by the final value of the loop variable, which is at this point equal to
10. In this case I could just have divided by 10 but in a more general case I would not know how
many numbers I was averaging until run time so I often use this trick.

8.1.1 Translating Codes with Arrays

One common use for arrays in embedded systems is in converting one kind of
code to another. This is most useful when the codes are successive integers
with few, if any, gaps. One particularly common example is printing values
in hex. Each different 4-bit binary number corresponds to a single hex digit,
a code of successive integers with no gaps. However, the ASCII codes for
the digits are not so simply placed. The decimal digits are easy; their codes
follow one another with no gaps. However there is a large gap in the ASCII
table between ‘9’ (0x39) and ‘A’ (0x41). A simple table allows us to perform
the translation in a single C expression.

We start by creating an array of the ASCII codes for the hex digits in order

char HexTable[16] = {`0','1','2','3','4','5','6','7',
'8','9','A','B','C','D','E','F'};

Then we can translate a number in the range 0-15 into its corresponding
ASCII hex representation with a single array reference. HexTable[3] returns
the ASCII code for ‘3’, HexTable[13] returns the ASCII code for ‘D’ as it
should. Thus, we can write a routine to write a single byte variable out to
the serial port in hex like this

void PrintHexByte(char ch) {
char HexTable[16] = {`0','1','2','3','4','5','6','7',

'8','9','A','B','C','D','E','F'};
//
// Extract and write the high order hex digit
//
Serial.write(HexTable[ch >> 4]); // >> shifts bits right
//
// Extract and write out the low order hex digit.
//
Serial.write(HexTable[ch & 0x0f]); // Mask off top nibble

}

Note the use of the right shift operator >>. This takes the bits of its left
argument and shifts them to the right the number of times given in its right
argument. It shifts zeros in to replace them so the ch >> 4 evaluates to
an 8-bit number with the top 4-bits of ch in its bottom nibble and zero in
its top nibble. It is exactly the binary representation of the top 4 bits of
ch. If we started out with ch = 0x59 = 0x01011001 then ch >> 4 would
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Because strings are represented in-
ternally as array of small numbers,
using the ASCII code, and are ter-
minated by a Zero, we sometimes
refer to them as ASCIIZ strings.

produce
0x05 = 0b00000101.

Similarly, ch & 0x0f masks off the top four bits of ch leaving only the bottom
four bits, the second hex digit. In our example

ch & 0x0f = 0x09 = 0b00001001.

8.1.2 Strings

Probably the most common use of an array variable in our programs will
be to represent a string. A string is simply a list of characters stored one
after another in adjacent storage cells so it is natural to represent a string in
C as an array of characters. We already have string constants to represent
fixed strings but they are just that, fixed. When we need to modify a string
we need to store it in an array variable. For example, this declaration will
create a variable with 20 slots for characters

char myString[20];

The trouble with this is that once we have a string in the variable we need
a way to mark how many of the character slots we have used since all of
the 20 bytes of memory contain something whether we put it there or not.
The C language does not have anything to say about this issue but tradition
(enshrined in the standard C libraries) says that we mark the end of the
string by putting a 0x00 byte after the last byte of the string. Thus our
20-byte variable can only hold strings of up to 19 characters and still leave
room for the terminating zero.
Example 8.1.2
The piece of code counts the number of characters in the string named myString. We use a while
loop to search through the array for the 0 that terminates the string while we keep track of how
many characters we have seen.

unsigned char index = 0;

while (myString[index] != 0) {

index = index + 1;}

}
// At this point index holds the number of chars
Since the answer, the number of characters in myString, is the value of the variable index when
the program stops, another possible choice of name would have been numChars. The name index
stresses the ongoing use of the variable while the name numChars stresses the final use.

It is important to realize that C does not provide any operations that work
on complete arrays. For example, if array1 and array2 are the names of two
C arrays we cannot copy the contents of one to the other by saying

array1 = array2; // This does NOT work

instead we must copy the elements one-by-one by ourselves. We would
usually use a loop to for this, resulting in code like
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It is possible to split a C program
over several files. This is a common
practice in the desktop world, where
programs tend to be much larger.
C provides the extern keyword to
let procedures in one file see global
variables declared in another. Our
programs are usually small enough
to fit naturally in one file so we won’t
worry about this.

I very carefully gave all the global
variables names that began with a
letter g. This is not a part of the C
language but is a common practice
that helps make clear that these are
special shared variables.

for (i = 0; i < length; ++i) {
array1[i] = array2[i];

}

We shall see a number of short procedures for playing with strings in the
next chapter.

8.2 Local, Global, and Static Variables

The variables that we have encountered so far are known technically as local
variables. Such variables are declared at the start of a procedure or block
and continue to exist and be visible until the end of the block. Once the
block ends, the storage associated with the variable is re-used and the old
variable no longer exists. Most of the time this is entirely adequate but
just occasionally we want something with a longer life. C provides several
alternatives.

8.2.1 Global Variables

A global variable is declared outside any procedure. It exists throughout the
lifetime of the entire program and it is visible to all procedures in the same
file. This provides a mechanism for different procedures to share information
between them.

Global variables must be declared just like any other variable but the
declaration comes outside any procedure, usually just after the include
directives at the top of the file. They can be scalars or arrays and they can
be initialized with constants in the usual way.

Used carefully, globals provide a means for different parts of a program,
different procedures, to communicate indirectly. Since a global is visible to
all the procedures in a single file, all the procedures can read and modify
it. This is both a good and a bad thing. The path of communication is
much less explicit than the normal path of argument and result between a
function and its caller. That makes the code harder to read but it can also
make the code more flexible.
Example 8.2.1
Let us consider the problem of writing navigation code for a small wheeled robot. The robot has
to keep sending commands to its wheels to keep the wheels moving. Let us assume that there is a
Move subroutine that takes care of this. Then there are other subroutines that receive information
from the external world. These could include subroutines to check whether the robot has run
into anything and routines to monitor external variables such as light intensity or temperature.
Finally, there must be a main routine that controls the whole system, analyzing the external
information and deciding on the next course of action. Several systems may want to know which
way the robot is facing or what the wheels are currently doing and the best way to make that
information generally available is through global variables.
Overall, the robot program might have a structure something like this.

/* Global variables. */
int gLeftSpeed = 0; // Current speed of left wheel
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Local Variables
Local variables are created in a spe-
cial region of memory called the
Stack. It operates like a stack of
plates in that you can only put
plates on the top of the stack and
can only take them off the top.
When a subroutine is called, the sys-
tem creates a new ‘plate’ of its local
variables and puts it on the top of
the stack. As soon as the subroutine
ends the ‘plate’ is taken away and
the local variables cease to exist.
Global and static variables are
stored in a different area of memory
that never goes away so they persist
through the life of the program.

int gRightSpeed = 0; // Current speed of right wheel
int gDirection = -1; // Compass direction, 0=north
int gLeftLight = -1; // Light level from left sensor
int gRightLight = -1; // Light from right.
//
void setup(void) \{

// initialize hardware and software
....

}
//
void loop(void) \{

/* Figure out current state of world */
leftbump = CheckLeftBumper();
rightBump = CheckRightBumper();
CheckIllumination();
/* Decide what to do next and do it */
PlanMotion(leftBump, rightBump);
Move();

}

Each subroutine only needs to know how to do one limited job and yet they
can share information without passing around tons of parameters and results.
In this example I mixed parameters and globals to illustrate that both can
play roles in the same program.

8.2.2 Static Variables

Sometimes you want a variable that is visible only within a single procedure,
like a local variable, but that persists from one invocation of the procedure
to the next. In that case you can declare a variable to be static. This is a
keyword that can be put in front of any valid variable declaration to tell the
compiler that this variable is persistent. The variable will be put into the
same region of RAM as the global variables but will be visible only to code
within that one procedure. You could, for example, use a static variable to
count how many times a subroutine has been called, or how many times it
has done some special action. An ordinary local variable won’t do this since
it is created anew each time the procedure is invoked and then destroyed as
soon as the procedure ends.
Example 8.2.2
The CheckLeftBumper procedure in the previous example could keep track of how many times
the robot has run into something using a static variable, like this:
int CheckLeftBumper() {

static sBumpCount;
if ( <code to check the bumper> ) {

sBumpCout = sBumpCount + 1;
return 1; // Report a hit

}
return 0; // Report no hit

}
Note again the use of a special kind of name for a special variable.
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