Physics of Musical Sound Class 8 Finish Chapter 5 Read Chapter 6 Homework due Friday

How Loud is a Sound?

- We detect energy
 - Measure Intensity=Energy/area/time
 - Energy \propto amplitude².
 - Huge range of intensities
 - quietest about 10⁻¹²W/m²
 - loudest near 10³W/m².
 - If ear responded linearly then loudest sounds would be trillions of times louder than quietest!

How Loud is a Sound?

- Ear roughly logarithmic
 - Ear more sensitive to soft sounds.
 - Alexander Graham Bell showed that the response is approximately logarithmic
- approximately logarithmic
 Sound Intensity Level: units Bels.
 - 1Bel very large; usually use the deciBel.
 - The SIL in deciBels is given by $SIL(dB) = 10 \times \log(\frac{SoundIntensity}{10^{-12} W/m^2})$

SoundIntensity =
$$10^{-12} \times 10^{\left(\frac{dB}{10}\right)}$$

Review Powers and Logs

- Basic Power Rules
 - $x^a \times x^b = x^{a+b}$ Usually want $10^a \times 10^b = 10^{a+b}$
 - E.g. $10^3 \times 10^{0.2} = 10^{3.2}$
 - $x^{a} / x^{b} = x^{a-b}$ Usually want 10^a / 10^b = 10^{a-b}
 - E.g. 104 / 10² = 10⁴⁻² = 10²

Review Powers and Logs

- Basic Log Rules
 - $Log(a \times b) = Log(a) + Log(b)$
 - Log(ab) = b \times Log(a)
 - E.g. $Log_{10}(2300) = Log_{10}(2.3) + Log_{10}(1000)$
 - E.g. $Log_{10}(2.5^2) = 2 Log_{10}(2.5)$

Some Sound Levels

- 0dB, 10⁻¹²W/m², the quietest sound possible to observe under ideal conditions
- 10dB, 10⁻¹¹W/m², a pin drop.
- 33dB, 2x10-9W/m², Physics Aud. at quietest.
- 75dB, 3.2x10-9W/m², McEwen dining hall during a normal meal
- 100dB, 10-2W/m², Peak sound in a very loud classical percussion concert.

Measuring Sound Levels

- Total energy regardless of frequency.
 Flat response.
- Because the ear is less sensitive at high frequencies and at low frequencies we often count the high and low frequencies less. Thus a given sound pressure at 50Hz will give a lower dB reading than the same sound pressure at 1000Hz.

Measuring Sound Levels

Combining Sounds 1

- When we combine two sounds we ADD the energies. There is no rule to tell us about the Log of the SUM of two numbers.
- To combine we:
 - 1) convert from SIL in dB into Sound Intensities in W/m²
 - 2) add the Sound Intensities
 - 3) Convert the sum back into SIL

Combining Sounds 2

- For Example
 - Sound Level in room alone = 50dB.
 - Sound Level in room with water cooler = 55dB.
 - What is Sound Level from cooler alone?
 - 50dB corresponds to SI=10⁻¹²10⁵=10⁻⁷W/m²
 - 55dB corresponds to SI =10⁻¹²10^{5.5}=3.16x10⁻⁷W/m²
 - Difference is 2.16x10-7W/m²
 - Convert to SIL=10 Log(2.16x10-7/10-12)
 - = 10 Log(2.16x10⁵)
 - = 53.3dB is sound level from cooler.

Chorus Effect

- A sine wave of amplitude A has Intensity $I_{0} \propto A^{2}$
- If I add two sine waves of amplitude A with exactly the same frequency and phase then the result has amplitude 2A and Intensity
 I∝ (2A)² = 4A² = 4I₀
- If I add two equal instrumental sounds then the frequency and phase will not be the same and the new intensity is just 2 I₀

Critical bands Critical Band Basal Membrane Neurons

Critical Bands

- About 20 regions
- Tell by masking
 - Play pitched sound
 - Try to obscure with noise