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Abstract

Free radicals—molecules with unpaired electron spins—play a key role in many biological processes

due to their high reactivity, as unpaired electrons tend to seek pairing through chemical interactions.1

Pulsed electron-electron double resonance (PELDOR/DEER) spectroscopy is a powerful method for

measuring nanometer-scale distances between unpaired electron spins in biological systems. In this

senior project, we simulate a four-pulse DEER sequence on a two-spin model with varying precession

rates to examine how dipolar coupling signals and their time evolution relate to inter-spin distances. By

varying the timing of a selective π pulse on a simulated spin ensemble and fitting the resulting echo

signal, we extract a characteristic oscillation frequency that is directly tied to the dipolar coupling of the

system. The methods described allow for distance extraction from simulated time dependent data.
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2 Introduction

Magnetic resonance techniques—including Nuclear Magnetic Resonance (NMR) and Electron Spin Reso-

nance (ESR)—are powerful tools for probing atomic-scale properties across a range of scientific and medical

disciplines. NMR has become essential in applications such as medical imaging and structural biology,

offering non-invasive, atomic-level insights into molecular systems through techniques like Magnetic Res-

onance Imaging (MRI).2 While NMR focuses on nuclei with magnetic moments, ESR is uniquely suited

for studying systems containing unpaired electron spins, including free radicals—molecules with unpaired

electrons—transition metal complexes, and paramagnetic centers. These species are key players in biological

processes such as oxidative stress, metal ion coordination, and enzymatic activity.3,4

Both techniques rely on the same core principle: using an external oscillating magnetic field to drive

transitions between spin states. However, ESR is particularly sensitive to the local environment of unpaired

electrons and enables direct measurement of spin-spin interactions and nanometer-scale structural features.

A major strength of ESR is its ability to quantify distances between electron spins, making it invaluable

in structural biology. This is especially true for nanometer range distance measurements, whereas traditional

NMR methods often lack this level of sensitivity. Techniques such as Double Electron-Electron Resonance

(DEER) leverage dipolar interactions between spins to extract precise distance distributions.4

In this project, we investigate how ESR—specifically DEER spectroscopy—can be used to extract struc-

tural information from biological molecules. By modeling spin interactions with spin Hamiltonians and

simulating their dynamics using the Quantum Toolbox in Python (QuTiP), we aim to demonstrate how

DEER enables high-resolution distance measurements between spin labels that can also be used for biologi-

cal systems. These methods can also be used for more basic characterization of inter-spin couplings, which

has applications for our research group more broadly.
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3 Background

Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR), is a magnetic

resonance technique that detects unpaired electron spins in a system. Much like Nuclear Magnetic Resonance

(NMR), ESR looks at the interaction between magnetic fields and quantum spin states. However, where

NMR focuses on atomic nuclei, ESR probes electrons directly. This is significant because electrons have

significantly larger magnetic moments and thus respond to higher-frequency radiation than their nuclear

counterparts. As mentioned previously, this makes ESR particularly well-suited for studying free radicals,

transition metal ions, and paramagnetic centers, all of which play key roles in many biological processes.3,4

When an external magnetic field (B0) is applied, the magnetic moments of unpaired electrons align ei-

ther parallel or antiparallel to the field, corresponding to two distinct energy levels—commonly referred to

as spin-up and spin-down states. Transitions between these levels can be induced by applying electromag-

netic radiation at the resonance frequency, which produces signals detectable as ESR spectra. In quantum

mechanical terms, however, electron spins are not restricted to being strictly up or down; they can exist

in coherent superpositions of these two states. As will be further discussed in the methods section, this

superposition can conveniently visualized using the Bloch sphere which represents the full quantum state of

a spin-1/2 particle and also helps illustrate how external pulses can modulate spin orientation during ESR

experiments.

ESR is commonly implemented in two modes: continuous-wave (CW) ESR, where a constant microwave

frequency is applied, and pulsed ESR, which uses short but strong microwave pulses to look at spin dynamics

over time. This thesis focuses on pulsed ESR, as it enables precise measurements of spin interactions and

distance-dependent couplings through time-dependent pulse sequences such as Double Electron-Electron

Resonance (DEER) which will be discussed at length in later sections.

ESR has unique capabilities in biomedical research due to its high sensitivity to unpaired electrons. Free

radicals play an essential role in many physiological processes and pathological conditions. One of the most

significant roles is in the mechanism of oxidative stress. This is a physiological process characterized by an

imbalance between the production of reactive oxygen species (oxygen-containing free radicals) and the rate

at which the body can neutralize them.5

Reactive oxygen species typically contain large numbers of free radicals which is why they are so chem-

ically unstable. Normally, the body can maintain equilibrium; however, when too many are produced too

quickly, the resultant oxidative stress can cause significant damage to important parts of our cells such as

DNA and encoding proteins.6 Chronic oxidative stress is associated with a number of diseases, including

neurodegenerative diseases such as Alzheimers, diabetes, and cancer progression. For one, tumors often exist
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in oxygen deprived environments. ESR-based oximetry can monitor oxygen and radical species concentra-

tions in living subjects which is critical to understanding key treatment tenets such as tumor metabolism,

chemotherapy resistance, and drug delivery.

Another useful role for oxygen sensitivity is during a stroke or similar ischemic events where living tissues

are deprived of oxygen. When blood flow is restored, an excess of reactive oxygen species are produced

which exacerbates the hypoxia-induced tissue damage.6 In pulmonary conditions such as chronic obstruc-

tive pulmonary disease (COPD) and asthma, reactive oxygen species also play a key role in inflammatory

signaling.

Recent experiments have also looked into ESR-based probes and spin labels that can be inhaled as a

possible measurement mechanism for the oxidative burden in lung tissues. ESR oximetry leverages the

paramagnetic properties of molecular oxygen. In its ground state, molecular oxygen contains two unpaired

electrons. As such, it interacts with any introduced spin probes via collisional spin exchange. The interde-

pendence of oxygen concentration on the relaxation rate of the corresponding ESR signal makes it possible

to measure the partial pressure of oxygen in tissues with high resolution.

Another key biomedical application of ESR is in the measurement of radiation exposure, also known as

dosimetry. This is because ionizing radiation creates free radicals in living tissues. Materials such as tooth

enamel, fingernails, and bone can retain radiation-induced radicals for long periods. This makes it possible

to obtain radiation dose assessments retrospectively. While these developments remain in their early states,

recent in vivo ESR technology advances now enable non-invasive dosimetry directly on living organisms

which will be a powerful clinical tool, particularly in the context of large-scale radiation exposure events.7

ESR can also be used in non-invasive medical imaging. Much like the well established technique of

using NMR for imaging, electron paramagnetic resonance imaging (EPRI) also uses magnetic field gradients

and radiofrequency pulses to create maps of spin probe distribution in tissues. However, due to the higher

gyromagnetic ratio of electrons in comparison to a nucleus, EPRI operates at lower magnetic fields than

MRI. This makes it highly sensitive to free radical concentrations which, given its power to investigate

tumor microenvironments, oxygen gradients, and redox status in living subjects, serves as a modality that

might be comparable to to MRI in cancer and metabolic disease research.8,9

Finally, central to the ESR setup is the resonator, which couples microwave energy into the sample to

drive spin transitions.10 The Collett Lab utilizes a loop-gap resonator (LGR), a design that has also been

used in various biomedical ESR applications.11,12 Given this overlap, future work could explore whether the

current resonator systems in the Collett Lab might be adapted for biological spin measurements, such as

those used in EPR oximetry or EPR imaging.

ESR spin-labelling techniques also allow detection and identification of radical species. This makes it
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possible to direct studies of oxidative damage and thus track the efficacy of related therapeutic interven-

tions.13 This ability to detect transient changes in radical species in real time and quantify changes in tissue

oxygenation make ESR an invaluable tool whose clinical applications certainly warrant further exploration.6

These applications show how the direct detection of radicals via ESR might bridge a critical gap in medical

diagnostics and molecular biology—and its potential as a non-invasive, quantitative, and real-time mea-

surement of redox dynamics in health and disease.6 These applications illustrate the significant biomedical

potential of ESR beyond basic spectroscopy. They also highlight opportunities for novel instrumentation

and pulse techniques that can expand the relevance of ESR in clinical research.
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4 Theory

4.1 Hamiltonian

As discussed in the background section, our system is a model of two spin labels, both of which are spin

1
2 particles. A static magnetic field B⃗0 is applied in the ẑ direction and an oscillating radio frequency (RF)

field B⃗1(t) is also present in the ŷ direction.

B⃗(t) = B⃗0 + B⃗1 = B0ẑ + 2B1cos(ω1t)x̂ (1)

The energy levels of a system are described by the Hamiltonian operator. For our two spin system, the

Hamiltonian has three components: HZ from the Zeeman interaction with the static field B⃗0, a coupling

term HJ , and a radio frequency (RF) term from the oscillating field.

Though we will break down each individual term in the following derivations, the total Hamiltonian used

for our spin system is

H = HZ + HJ + HRF (2)

4.2 Zeeman interaction term

The Zeeman term due to spin interacting with the static field B0 is

HZ = −µ⃗ · B⃗0 = gµBB0Sz = ℏω0Sz (3)

with oscillation frequency ω0 = gµBB0

ℏ . The magnetic moment is given by

µ⃗ = gµBS⃗

where µB represents the Bohr magneton and g is a dimensionless constant that relates the magnetic dipole

moment of an electron spin to its angular momentum. The g value for an isolated electron is 2, however,

that changes significantly depending what spin label is in use.

Note that because we are looking at a two-spin system, the total Zeeman term will have contributions

from both Sz1 and Sz2 . Taking that into account, equation 3 can be expanded as

HZ = −µ · B⃗0 = gµBB0(Sz1 + Sz2) = ℏω0(Sz1 + Sz2) (4)
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4.3 RF Hamiltonian for ESR

The radio-frequency (RF) term HRF then describes interactions with the oscillating transverse field B⃗1:

HRF (t) = −µ⃗ · B⃗1(t) = 2µBB1cos(ωt+ ϕ)gSx (5)

where t is time, ω is the frequency of the RF field in the xy plane, and ω0 is the Larmor precession frequency

along the static field B0. The phase shift given by ϕ dictates the orientation of the oscillating field in the

transverse plane, and thus the axis about which the spin rotates in the rotating frame.14

The transverse nature of HRF is what ultimately drives spin state transitions in our a system. The

applied RF field must be perpendicular to B0 to drive time-dependent transitions that do not commute with

the static Hamiltonian.

While the RF field is applied, the spins will be oscillating between states at the Rabi frequency which is

defined as

Ω1 =
gµBB1

ℏ
(6)

where g is the electron g factor, µB is the Bohr magneton, B1 is the oscillating field amplitude in the ŷ

direction, and ℏ is the reduced Planck constant.15

With equations 3 and 5, we can re-express equation 2 as the standard ESR Hamiltonian due to the

application of both static and oscillating fields in the ẑ and ŷ directions respectively. As we will discuss

later, the RF field will only be applied for some of the time.

H (t) = ℏω0Sz + ℏΩ1cos(ωt)Sy (7)

4.4 Rotating Wave Approximation (RWA)

The RF Hamiltonian from equation 7 can be further simplified by transforming into a frame rotating at

the frequency ω of the oscillating field. We will be simulating an ensemble of spins with slightly varying

precession rates to model the local field inhomogeneities that are typically present. In this rotating frame,

rapidly oscillating terms in the lab frame Hamiltonian are averaged out, yielding an approximation with no

temporal dependence. Using Euler’s relation, the cosine term in the RF field can be rewritten as

cos(ωt) =
1

2
e−iωt

. Under the rotating wave approximation (RWA), the counter-rotating term eiωt can be neglected since it
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averages to zero over relevant timescales. Substituting into equation 7, we obtain a simplified expression for

our rotating frame Hamiltonian:

HRWA = ℏ(ω0 − ω)Sz +
1

2
ℏΩ1Sx (8)

The first term captures the decoherence of the system which is defined as the frequency difference between

the spin’s natural precession rate ω0 and the RF field frequency ω. When ω = ω0, the RF field is oscillating

at its resonance frequency and the detuning term vanishes. However, due to local field inhomogeneities, slight

decoherence often exists in practice which can have significant effects on spin dynamics. In real samples,

static magnetic fields can experience slight variations in different spin environments. This can cause each spin

to precess at a frequency that is slightly different than ω0. Consequently, some spins are precessing slightly

faster and others slower than the RF field which, in the rotating frame, leads to destructive interference as

spins gradually spread out. The resultant decrease in net magnetization is a major contributor to transverse

decoherence and is quantified by the time constant T2 (not the same as spin-spin interactions). The rotating

frame Hamiltonian in equation 8 is the effective model we ultimately use in our simulations to describe spin

dynamics under pulsed ESR conditions.

4.5 Decoherence

In any realistic spin system, interactions with the surrounding environment lead to decoherence—the

gradual loss of quantum phase information over time. While the Hamiltonian in equation 2 governs the

unitary evolution of an isolated spin system, decoherence introduces non-unitary dynamics that must be

considered to accurately model experiments such as DEER.15

One of the primary sources of decoherence in pulsed ESR experiments arises from fluctuations in the local

magnetic field, which can be caused by inhomogeneities due to molecular motion, spin-lattice interactions, or

other nearby paramagnetic species.2 These random fluctuations lead to a spread in precession frequencies,

causing spins to dephase relative to each other over time. Importantly, in the context of DEER, we rely on

controlled fluctuations of the local field due to intentional flipping of the second spin which is how changes

to the precession behavior of spin 1 are induced.

Although including decoherence in the simulation is somewhat straightforward (ie. adding T2 relaxation

terms), our purpose in this work is to verify the correct modeling of the coherent distance-measurement

process in DEER. As such, we assume a closed quantum system to isolate spin-spin interaction effects in

an idealized system. This means we neglect environmental interactions and treat the system as undergoing

exclusively unitary evolution. This assumption simplifies the analysis and highlights the role of dipolar

coupling and pulse sequences in generating and detecting DEER oscillations.
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The rotating wave approximation given in equation 8 is the total spin Hamiltonian ultimately used for

the purpose of our simulation.
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4.6 Dipolar Interaction Term

For the two interacting spins in our system, we must account for their dipole-dipole coupling in the total

Hamiltonian. Their interaction is sensitive to the inter-spin vector r⃗ = |r|r̂ where |r| is the magnitude of the

spin-spin separation and r̂ points from one spin to the other and thus can be used to extract the distance

between the two spins in the system.

The classical dipole-dipole interaction energy between two magnetic dipoles is given by

Ed =
µ0

4πr3
[µ⃗1 · µ⃗2 − 3(µ⃗1 · r̂)(µ⃗2 · r̂)] , (9)

where µ0 is the vacuum permeability r⃗ is the inter-spin vector. Substituting the expressions for vecµ1 and

µ⃗2, we obtain the dipolar interaction Hamiltonian:

HJ =
µ0

4π

g1g2µ
2
B

r3

[
S⃗1 · S⃗2 − 3(S⃗1 · r̂)(S⃗2 · r̂)

]
. (10)

To extend this discussion to DEER, we focus on how the dipolar interaction HJ provides a mechanism

for measuring distances between spin labels. As shown in equation 10, the strength of the dipolar coupling

scales as 1/r3, where |r| is the distance between the two spins.

In a DEER (Double Electron-Electron Resonance) experiment, this dipolar interaction causes modula-

tions in the spin echo signal. Specifically, spin 1 is manipulated with a standard spin echo sequence, while

a second spin is flipped by a separate pulse at a different frequency in the transverse direction. When the

pump pulse flips the state of the second spin, the local dipolar field experienced by the first spin changes,

which in turn alters its precession and changes the amplitude of the echo signal. These modulations encode

the strength of the dipolar interaction from which the inter-spin distance can be extracted.

The oscillation frequency in the resulting DEER signal can then be used to extract the dipolar coupling

constant D. This relates to the distance between spins |r⃗|:

D =
µ0

4π
· g1g2µ

2
B

ℏr3
(1− 3 cos2 θ), (11)

where θ is the angle between the inter-spin vector r⃗ and the static magnetic field B⃗0. The orientation

dependence is in the term 1− 3 cos2 θ.

In systems with randomly oriented spin pairs, like our simulation environment, molecules adopt random

orientations with respect to static field B0.
16 The orientation-dependent term, 1− 3 cos2 θ from equation 11

cancels out and the resulting signal depends only on the inter-spin distance distribution r⃗.
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We model both the coherent dynamics of spin evolution with and without applied radio frequency fields

but are only simulating the simplified version of the spin system. This allows us to investigate how different

dipolar couplings might alter recorded echo intensities and how they evolve as a function of time T .

Changes to the echo signal due to the dipolar interaction between the two electron spins V (t), can be

expressed as:

V (t) =

∫ Rmax

Rmin

κ(r, t)P (r) dr (12)

Where P (r) is the distance distribution function, and κ(r, t), the most general form of the coupling term,

is:

κ(r, t) =

∫ 1

0

cos
[
(1− 3x2)ωdt

]
dx (13)

with dipolar coupling frequency

ωd =
µ0

4π

g2µ2
B

ℏr3

. Here, x = cos(θ), and θ is the angle between the inter-spin vector r⃗ and the external magnetic field

direction.17

In our simplified model, we assume a single, fixed distance between spins and a specific orientation

(θ = π/2), which simplifies equation 13 to:

κ(r, t) = cos(ωdt) (14)

This assumption corresponds to adjacent spins in the transverse (xy) plane. As will be discussed in

the following sections, resultant modulation pattern in the DEER signal can then be used to calculate the

distances between spin labels.
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5 Methods

5.1 Pulse Sequence

The Hahn echo sequence is a fundamental technique in pulsed magnetic resonance experiments, designed

to mitigate the effects of inhomogeneous broadening in spin systems.

The typical 4-pulse DEER sequence used in this experiment consists of the following steps:

1. Initial π/2 pulse: This pulse tips the net magnetization vector from its equilibrium position along the

static magnetic field B0 (for our specific spin system this is in the +ẑ direction) into the transverse (xy)

plane. The resulting superposition of spin states is what then initiates precession at their respective

Larmor frequencies.18

2. Evolution period τ : During this interval, spins de-phase due to local magnetic field inhomogeneities,

leading to a decay in the observable transverse magnetization.

3. Refocusing π pulse: Applied after time τ , this pulse inverts the spin vectors in the transverse plane

to refocus the spins due to any decoherence that occurred due to static inhomogeneities in the prior

relaxation period

4. Echo formation at time 2τ : After an additional period τ , the spins re-cohere which results in the

formation of a spin echo. The additional period is necessary because the system is initially overwhelmed

by the pulse ringdown. Following the evolution period, spins re-align which we can detect because our

equipment is sensitive to oscillating fields in the transverse plane. As such,any decoherence that

occurred due to static field inhomogeneities are effectively refocused. This allows for a more accurate

measurement of spin-spin relaxation times (T2).
19

Building upon the Hahn echo sequence, the four-pulse Double Electron-Electron Resonance (DEER)

sequence introduces additional pulses to measure dipolar interactions between electron spins, providing

insight into distances at the nanometer scale. The sequence is as follows:

1. Spin 1 π/2 pulse: Initial state of spin ensemble; spins are aligned with net magnetization vector B⃗0

in the +ẑ direction.

2. First evolution period τ : Spins dephase due to inhomogeneities.

3. Spin π pulse: Inverts the spins, initiating rephasing.

4. Second evolution period τ : Spins continue to evolve, leading to the formation of an echo at time

2τ .
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5. π pulse on spin 2: Applied at a different frequency, this pulse selectively inverts a second set of spins

(spin 2) at a variable time T after the initial π/2 pulse. The dipolar interaction between the spin 1

and spin 2 causes a modulation in the echo amplitude as a function of T .

6. Spin 1 π pulse: A second π pulse applied to spin 1 which refocuses the echo. This increases the

dipolar interaction sensitivity.

This sequence allows for the measurement of dipolar coupling between spins, which is directly related to

the distance between them as described in more detail in the theory section. By analyzing the modulation

of the echo amplitude as a function of the spin 2 delay, a sinusoidal curve fit in equation 20 can be applied.

The parameters one can extract distance distributions within the sample.20

Figure 1: Schematic of the four-pulse DEER sequence. The spin 1 pulses (black) create and refocus the spin echo,
while the spin 2 (red) inverts the spins at a variable time T . The echo amplitude is modulated due to dipolar
interactions.

5.2 Bloch Sphere time evolution

Spin ensemble simulation: The spin ensemble progression in response to the DEER pulse sequence is

shown in figure 2. (a) shows the spin ensemble in its ground state where the spins are aligned with the static

magnetic field along the +ẑ axis. (b) shows the evolved ensemble state after the initial π/2 pulse. After

evolution period τ , spins in the ensemble are coherently aligned with the x-axis. After time τ , spins in the

ensemble spread out in the xy plane due to local field inhomogeneities (c). As shown in (d), π pulse is then

applied and spins are inverted about the transverse (xy) plane. This initiates echo formation which occurs

at time 2τ (e). The time evolution of the system at time τ after the aforementioned echo is shown in (f).

A second π pulse is applied to spin 1 which again, inverts the spins (g) which initiates a second echo (e)

occurring at time 2τ after first echo.
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Figure 2: Ensemble state after evolution period due to each spin 1 pulse in the 4-pulse DEER sequence seen in figure
1. Each sphere represents the ensemble state after the associated time evolution period.

5.3 Qutip Simulation Framework

All analyses presented here are based on simulations of a two-spin system, rather than experimental

measurements. We employ the Quantum Toolbox in Python (QuTiP) to simulate the dynamics of spin

systems under the four-pulse DEER (Double Electron-Electron Resonance) sequence. QuTiP facilitates the

construction of time-dependent Hamiltonians and the numerical integration of the Schrödinger equation to

model the time evolution of a closed quantum system. This is made possible by QuTiP’s master equation

solver function, mesolve, which numerically integrates the following equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ (15)

Collapse operators are set equal to an empty list and consequently, mesolve defaults to solving the

standard time-dependent Schrödinger equation. This models unitary evolution, which is appropriate for

closed quantum systems like that of our simulation environment.21 In this scenario, the system’s evolution

is solely determined by its Hamiltonian, without no energy dissipation.

The total Hamiltonian Ĥ(t) as shown in equation 2, is composed of multiple components:

Ĥ(t) = ĤZeeman + ĤRF(t) + Ĥdipolar (16)
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• Static Zeeman Term (ĤZ): Represents the interaction of each spin with the external static magnetic

field.

• Radiofrequency (RF) Term (ĤRF (t)): Time-dependent terms corresponding to the applied mi-

crowave pulses

• Dipolar Interaction Term (Ĥdipolar): Accounts for dipole-dipole coupling between the two electron

spins

Defining the pulse sequence and corresponding parameters within QuTiP is what allows us to model and

predict the resulting echo signals of our two-spin system.

5.4 Dipolar Interaction and Distance Extraction

To extract the dipolar coupling frequency ωd from the simulated echo signal, we fit the modulation to a

damped cosine function:

V (T ) = Ae−BT cos(CT +D) + E (17)

Here, C corresponds to ωd. Once ωd is determined, the inter-spin distance r can be calculated using:

r =

(
µ0

4π

g2µ2
B

ℏωd

)1/3

(18)

This is the approach that ultimately allows us to simulate DEER experiments and extract quantitative

distance information between spins based on the dipolar interaction.
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6 Results

As derived in the theory section, the total spin Hamiltonian in the rotating frame used in our simulation

is

H = HZ + HJ + HRF . (19)

For the purposes of our simulated V (T ) plot shown below (see figure 3), each term is simplified such that

precession rates about the +ẑ axis are only being accounted for in the Zeeman interaction term HZ = r⃗SZ1
.

We simulate an ensemble of N = 100 spins with varied precession rates from −5 to +5 GHz.

Simulation parameters used are shown in the following table:

Parameter Symbol Value Units
Pulse width tp π/2 ns

Delay time (fixed) τ 5 ns
Delay time (variable) τ1 10 ns

Dipolar coupling strength J∥ 0.5 GHz
RF pulse strength ω1 1 GHz

Table 1: Simulation parameters used in the total DEER spin Hamiltonian. Note that the variable delay time is the
maximum offset used for figure 3.

To characterize the effect of dipolar coupling between electron spins, we simulated a DEER pulse sequence

with a variable delay time T . The overlap between the final state and a reference state—defined as the

uncoupled state following the pulse sequence—can act as a proxy for the echo signal. As such, varying the

delay time makes it possible to observe how spin-spin interactions affect the overall coherence of the system.

6.1 V(T) modulation from dipolar coupling

In our simulations, we varied the delay time T from 0 to τ1 − tp, where, as shown in figure 1, tp is the

duration of the π pulse acting on spin 2. For each T value, the average overlap between its final evolved

spin state and its known initial state is then used to obtain V (T ) shown in figure 3. The oscillatory signal

observed reflects coherent spin-spin coupling.

These oscillations arise from the time evolution caused by the dipolar interaction during the delay periods

before and after the spin-2 π pulse. As detailed in the theory section, this interaction introduces a phase

shift that is dependent on the dipolar coupling constant, which in turn depends on the inter-spin vector r⃗.
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Figure 3: V(T) plot with sinusoidal curve fit (see equation 20). Fit parameters for our simulated data set are shown
in table 2

The damped oscillatory behavior of our curve fit from figure 3 is accomplished using the following function:

V (T ) = Ae−BT cos(C · T +D) + E (20)

for which A is the oscillation amplitude, B is the decay rate, C is the dipolar frequency, D is the phase

shift, E is the vertical offset, and time T is measured in nanoseconds. The only distance dependent parameter

is the dipolar frequency C.

Table 2: Fitted Parameters for V (T ) Curve with Standard Errors and Units

Parameter Value ± Uncertainty Units
A 0.260± 0.015 A.U
B 0.000± 0.002 ns−1

C 2.000± 0.020 ns−1

D 0.833± 0.010 Radians
E 0.374± 0.012 A.U

The distance distribution is contained in the dipolar frequency which corresponds to the fit parameter

C = 2.000 GHz. The inter-spin distance |r| can then be extracted via the dipolar coupling relationship

derived in equation 11.

ωd =
µ0g

2µ2
B

4πℏr3
⇒ r =

(
µ0g

2µ2
B

4πℏωd

)1/3

Substituting physical constants and dipolar frequency ωd = 2.000 GHz, we obtain an inter-spin distance:
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r ≈ 2.5nm

This result demonstrates how DEER spectroscopy can resolve spin-spin distances on the nanometer scale,

validating the simulation approach.

7 Discussion

This simulation demonstrates how varying the timing of a spin-selective π pulse in a DEER sequence

allows the extraction of dipolar oscillation frequencies from which the distance between two coupled spins can

be obtained. By fitting the simulated echo signal to a damped cosine function, we obtained a quantitative

measure of the dipolar coupling strength, and thereby the inter-spin distance. This supports the use of

DEER as a model-based tool for simulating and analyzing spin dynamics in coupled systems.

Figure 4: Residuals of the fitted curve V(T) from Equation (20), showing the difference between the simulated data
and the fitted model. The small residual values indicate a good fit and validate the accuracy of the damped oscillatory
function

Shown in figure 4 are the V (T ) residuals. This represents the differences between observed data and

what is predicted by our fitted function from equation 20 and fit parameters shown in table 2. Our residuals

are on the order of 1e−7V while the actual signal oscillations are on the order of 1e−1V . The fractional error

of 1e−5 indicates an excellent fit for this data set.

At this point, the main contributor to the error is likely the slight decoherence incorporated through the

precession rates. This is because after the pulses all the spins are not completely aligned, and that inevitably
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introduces some error. At this point, this is not particularly meaningful given that our simulation is so close

to that of an ideal model. Still, the dataset produced is a good fit to the anticipated function which indicates

that, at a fundamental level, our simulation is successfully modeling a two spin system.

A possible way to proceed in this project would be to extend the simulation to incorporate some environ-

mental effects that would typically be present in an open quantum system. The most immediate next step

would be to make the coupling more complicated which would better model how a true pair of spin labels

would be behaving in practice. The additional ideas listed above—environmental effects, pulse variations,

and different labeling strategies—are also valuable and should be pursued in future work. Additionally,

exploring different pulse timings, pulse shapes (ie. continuous wave as opposed to pulsed excitation), and

spin labels could improve the resolution and biological relevance of the simulation. The existing framework

can be used to account for how the resultant relaxation effects might impact the distribution of spin–spin

distances.
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8 Conclusion

In this project, we used simulations to explore the principles and capabilities of Double Electron-Electron

Resonance (DEER) spectroscopy, a pulsed ESR technique for measuring nanoscale distances between spin la-

bels.4,22 DEER distance measurements are increasingly relevant to structural studies of biological molecules

such as proteins, nucleic acids, and membranes.16 By modeling a two-spin system with variable dipolar

coupling and precession rates, we implemented a four-pulse DEER sequence using the Quantum Toolbox

in Python (QuTiP),23 and analyzed the resulting echo modulation as a function of the delay time between

pulses. Fitting the simulated echo signals allowed us to extract characteristic oscillation frequencies directly

related to the dipolar interaction strength, and therefore to inter-spin distance.16 These results support the

expected relationship between DEER signal modulations and nanoscale structural information.Our simula-

tion framework provides a basis for extending DEER analysis to more complex spin systems and incorporating

realistic experimental effects such as noise, orientation selection, and relaxation dynamics.20 The simulations

detailed in this project can advance the general understanding of spin labels and how they might inform

future DEER experiments.

22



A Code Listings

Below are key scripts used for the simulation and V (T ) plot generation as well as Bloch sphere visual-

ization using QuTiP and matplotlib.

A.1 Pulse and Evolution Functions

1 import qutip as qt

2 import numpy as np

3

4 Sz1 = qt.tensor(qt.sigmaz (), qt.qeye (2))

5 Sz2 = qt.tensor(qt.qeye (2), qt.sigmaz ())

6 Sy1 = qt.tensor(qt.sigmay (), qt.qeye (2))

7

8 def pulse(in_states , precession_rates , pulse_time , J_par=0, show_Bloch=True):

9 # ... code content ...

10 return evolved_states0

Listing 1: Core pulse and evolution functions

A.2 V(T) Curve Generation

1 # Constants

2 t_p = np.pi / 2

3 tau = 5

4 tau_1 = 10

5 J_par = 0.5

6

7 T_values = np.linspace(0, tau_1 - t_p , 100)

8 V_values = []

9

10 for T in T_values:

11 # Pulse sequence

12 # ... code content ...

13 V_values.append(V)

14

15 plt.plot(T_values , V_values)

16 plt.xlabel(’T’)

17 plt.ylabel(’V(T)’)

Listing 2: Simulation loop for V(T) curve
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