
Investigating faster quantum gate schemes for

molecular nanomagnet qubits

Rebecca Dalphin

December 2024

Advised by Professor Charles Collett

A Thesis presented to the Faculty

of the Hamilton College Physics Department

in Partial Fulfillment of the Requirements

for the Degree of Bachelors of Arts

1

Abstract

Quantum computers are one of the most exciting technologies being developed

currently. Molecular nanomagnets (MNMs) present unique advantages as po-

tential qubits, but for MNMs to be a viable qubit option we must be able to

perform a universal basis set of quantum gates. For the MNM Cr7Mn, the ro-

tation gate and phase gate, forming two of the three gates in the universal basis

set, have been demonstrated. A passive scheme for the third gate, a CNOT,

has previously been proposed but is relatively slow, so in this work we explore

alternative active schemes to find a faster option (C. Collett et al., 2020). We

propose a scheme that performs a CNOT with only a single Gaussian pulse, act-

ing significantly faster than the previous scheme. Our simulations show that it

performs almost as expected, with the exception that it adds a conditional phase

as well, creating an iCNOT gate with high fidelity. We demonstrate that the

iCNOT gate is effectively interchangeable with the CNOT gate by simulating

its use in a quantum phase estimation algorithm.

1

Acknowledgments

I would like to thank my advisor Charles Collett for his support and guidance

throughout my thesis project. His patient explanations and enthousiasic en-

couragement ensured not only the success of my project, but also that is was

fun.

Additionally, I would like to thank the physics department. This department

has become my home at Hamilton. I would not be the scientist I am today

without the experiences and support I found here.

I would also like to thank my friends and family. I couldn’t have done it without

you.

2

Contents

1 Introduction 7

2 Background 8

3 Theory 15

3.1 Quantum Algorithms . 19

4 Methods 23

5 Results 27

6 Discussion 34

A List of possible transitions 39

B QuTiP implementation of pulse comparison 40

C QuTiP implementation of pulse evolutionary algorithm 45

D Qiskit implementation of the Quantum Phase Estimation algo-

rithm 53

3

List of Figures

1 The lowest energy S = 1 spin system for Cr7Mn, plotted as a

function of applied axial field, along with the structure of the

molecule. The blue and orange lines correspond to the |+⟩ and

|−⟩ states, while the green line corresponds to the |0⟩ state. Fig-

ure from C. Collett et al., 2020. 11

2 A Bloch sphere, showing the |+⟩ and |−⟩ states, with a |+⟩ vector

shown in green. All possible spin states represented by points on

the surface of the sphere. 12

3 The energy eigenstates for Cr7Mn against the coupling values . . 17

4 The shapes of both types of pulses used in this thesis 25

5 A diagram of the quantum circuit used for phase estimation . . . 26

6 Simulated transition using a square wave shape, with the tran-

sition frequency set to be correct for a |−0⟩ to |+0⟩ transition,

acting on a pure |−0⟩ state . 28

7 Simulated transition using a square pulse, with the transition

frequency set to be correct for a |−0⟩ to |+0⟩ transition, acting

on a pure |−−⟩ state . 28

8 Pure state fidelity of driving a |−0⟩ → |+0⟩ transition when us-

ing a |−0⟩ → |+0⟩ frequency. The pulse width is 140.5ns, and

amplitude 2.04MHz . 29

9 Pure state fidelity of driving a |−−⟩ → |+−⟩ transition when

using a |−0⟩ → |+0⟩ frequency. The pulse width is 140.5ns, and

amplitude 2.04MHz . 30

10 Transition from the super-positioned state of |−−⟩ and |−0⟩ com-

pared to a final state of |−−⟩ and |+0⟩. The pulse width is

140.5ns, and amplitude 2.04MHz 31

4

11 Fidelity of being in the state given by multiplying the iCNOT

matrix above by the start state compared to the state due to the

transition from the Gaussian pulse. The pulse width is 140.5ns,

and amplitude 2.04MHz . 33

12 An equal superposition of the |−−⟩ and |+−⟩ states being driven

by the Gaussian pulse, compared to outcome of the iCNOT gate.

The pulse width is 140.5ns, and amplitude 2.04MHz 34

5

List of Tables

1 Results of the phase estimation algorithm for both the CNOT

and iCNOT gates. The fractions represent the phase and the

coefficients in front of each fraction represent the number of indi-

viduals in the simulated population (total number = 1024) that

had this phase. 35

2 Table of all available transitions with transition frequencies (with

no coupling) and spin operators 40

6

1 Introduction

Quantum computing is one of the technologies poised to significantly impact

the twenty-first century. Recognition of this has sparked significant research

recently, with many important advancements in the field. These advancements

include IBM’s computer with 1121 qubits (Rao, 2024) and the development of

the AlphaQubit by Google to start to address quantum error correction (Google,

2024). The key advantage of quantum computers is the speed with which they

can solve problems in which a large amount of data needs to be manipulated, or

a large search space examined. Examples of where quantum computers could

be applied are machine learning, financial modeling, or cybersecurity (Roundy,

2023).

The fundamental difference between classical computers and quantum com-

puters that allows for this dramatic speed change is the way information is

stored. In classical computers, the basic information storage is a bit, which can

be expressed as either a 0 or a 1. However, quantum computers use quantum

bits, or qubits. Qubits also have two states, again either |0⟩ or |1⟩, but due

to their quantum nature, they can exist in a superposition of these two states.

Unlike bits, which exploit classical systems to store information, qubits exploit

the quantum properties of a given system (Schneider and Smalley, 2024). There

are many different choices for quantum systems that could function as qubits.

Some of the more popular qubits currently being researched are superconduct-

ing, trapped ions, and quantum dots (Schneider and Smalley, 2024).

The qubit system we have chosen to use is molecular nanomagnets (MNMs).

Much like the other qubit modalities, such as quantum dots and photons (Schnei-

der and Smalley, 2024), this system exploits the quantum nature of spin, in this

case the spin ensemble of the molecule. Despite not being as well developed

currently as other systems, we are investigating MNMs due to how easy they

7

are to chemically engineer, and for their potential solutions to quantum error

correction (Chiesa et al., 2024). In this system we define the |↑⟩ spin state to be

1, and the |↓⟩ spin state to be 0. Due to the quantum nature of spin, the qubit

can be in any superposition of these states. The values of these superpositions

can be changed by ‘tipping’ the spins (described further in background), which

amounts to a basic logic operation.

The long term aim of this lab is to show the viability of this system for

quantum computing by performing multi-qubit operations. To this end we need

to be able perform all the gates in a logical basis for computing, which is the

scope of this thesis. The logical basis we have chosen is comprised of the Rx

and Ry rotation gates, the phase gate, and the CNOT gate (QuEra, 2023). We

interact with the qubits using Electron spin resonance (ESR), which works by

applying radio frequency (RF) pulses to the spins, which means we must be

able to find ways to perform the logic gates with RF pulses.

We already have ways to perform the rotation and phase gates; however,

the CNOT gate, which requires interacting with two coupled qubits, is more

complicated. As will be discussed further in the background section, a passive

scheme which performs a CNOT gate has already been found (C. Collett et al.,

2020). However, it requires a slow free evolution step and thus takes approxi-

mately 924ns to act. For quantum computing it is ideal to have as fast a gate as

possible to allow more gates to be applied in a given amount of time. Therefore

the goal of this thesis is to develop an active CNOT gate scheme which can be

significantly faster.

2 Background

As mentioned above, molecular nanomagnets (MNMs) are one option currently

being investigated for their viability as qubits. MNMs consist of a magnetic

8

core composed of one or more metal ions, and organic ligands surrounding this

center. The organic ligands separate the core from the rest of the environment,

resulting in strong coupling between the metal ions and weak dipolar coupling

between neighboring molecules (Chiesa et al., 2024). The strong core coupling

means the spins of these molecules act as one ‘giant spin’. The energy states

of this ‘giant spin’, which are determined primarily by internal anisotropy from

the molecular structure, can be used as qubit states. The multiple energy levels

(spin values can vary from 1
2 to more than 10) in MNMs lead to potential

solutions to quantum error correction, where the same computation could be

done multiple times on the same qubit, and the results averaged to reduce the

possibility of an error. One such MNM, Cr7Mn, has been studied as a qubit

candidate for the ease with which its traits can be engineered leading to its

long coherence time, caused in large part by the clock transition at zero field

(Garlatti et al., 2014).

To understand the importance of coherence time (T2) it is worth noting that

one of the requirements of any qubit is that quantum gates must be able to be

implemented in a consistent and predictable way. This means the qubit must be

able to maintain its quantum state long enough for many gates to be performed,

since actual computations will take a long time. At low temperatures, in our

system, the main factor to cause decoherence is dipolar interactions (Chiesa

et al., 2024). If decoherence occurred too quickly, a state could be randomized

before the computation was completed, so measurements would not reflect only

the effects of the gates used in a computation, but also the effects from fluctu-

ations of the qubit’s spin due to dipolar interactions. Thus, the quality of the

qubit is proportional to T2. However, the number of gates a qubit can perform

(corresponding to the complexity of the computation) within T2 depends on

how long the gates take to act (tgate). This means that the quality of the qubit

9

is also inversely proportional tgate. We therefore define one figure of merit η for

a qubit to be the coherence time (T2) divided by the time it takes to perform a

gate operation (tgate),

η =
T2
tgate

. (1)

Clearly, one way to increase the quality of a given qubit is to increase the

coherence time. Here MNMs present a significant advantage. MNMs are chem-

ically engineered resulting in it being possible for their traits to be altered by

chemical synthesis (Chiesa et al., 2024). This includes being able to engineer

the spin Hamiltonian of the molecule, controlling the energy levels and the cou-

pling (Chiesa et al., 2024). Crucially, this engineering allows clock transitions to

be added, and coupling between spins in heterodimers to be varied. The spins

in Cr7Mn have been engineered such that the ground state is an S = 1 state.

In a magnetic field this leads to the expected splitting into 2n + 1 = 3 states.

Figure 1 shows the energy spectrum for the ground state effective spin system

for Cr7Mn (C. Collett et al., 2020), plotted against the strength of an applied

magnetic field. Figure 1 also shows a diagram of the structure of the molecule,

clearly showing the hetero-metallic ring that is surrounded by organic ligands.

The energies for the three spin states are represented by the blue, orange, and

green lines. In high field, the orange and blue lines have the expected divergence

from each other due to the Zeeman effect. In high fields these correspond to the

states |+1⟩, |−1⟩ and |0⟩, these being the Sz eigenstates. However, near zero

field there is an ‘avoided crossing’, where the expected degeneracy between the

two states is broken by transverse anisotropy. The energy eigenstates in this

region are,

|−⟩ = |+1⟩ − |−1⟩
2

, (2)

10

and

|+⟩ = |+1⟩+ |−1⟩
2

, (3)

along with the constant |0⟩ state. This ’avoided crossing’ is a clock transition.

In this region, to first order, the energy of the state does not depend on the

strength of the magnetic field. This reduces the energy fluctuations of the states

due to fluctuations in the local field environment. Energy fluctuations change

the precession frequencies of the spins, which would cause them to dephase

faster.

Figure 1: The lowest energy S = 1 spin system for Cr7Mn, plotted as a function of
applied axial field, along with the structure of the molecule. The blue and orange lines
correspond to the |+⟩ and |−⟩ states, while the green line corresponds to the |0⟩ state.
Figure from C. Collett et al., 2020.

Transitioning between the different spin states in Figure 1 is done by adding

or taking away energy. In a lab setting, these transitions can be induced with

electron spin resonance (ESR). This can be most easily understood using Bloch

sphere diagrams, pictured in figure 2. The z axis represents the alignment of

the intrinsic magnetic field of the qubit. The |+⟩ state is perfectly aligned with

this field, while the |−⟩ state occurs when the spins are perfectly anti-aligned

with the field. Any point on the surface of the sphere represents a possible

11

superposition of these two states.

Figure 2: A Bloch sphere, showing the |+⟩ and |−⟩ states, with a |+⟩ vector shown in
green. All possible spin states represented by points on the surface of the sphere.

Using radio frequency pulses set to a frequency corresponding to the energy

difference between two states, transitions between energy states can be induced.

In the case of figure 2, a transition could be induced from the |−⟩ state to the

|+⟩ state by adding the exact energy difference between these two states. For

MNMs, any pair of states can form a qubit, and the spin energy state acts as

bits, or in classical computing terms, a |+⟩ could correspond to a 1, and a |−⟩

could correspond to a 0. Thus, a pulse (or a series of pulses) which changes the

superposition of the spin state is acting as a logic gate.

In quantum computing a universal basis set is a combination of logic gates

that would be able to produce any desired computation. One of the common

basis sets is comprised of rotation gates, a phase gate, and a controlled not

(CNOT) gate (Neilsen and Chuang, 2010). Rotation gates consist of a rotation

away from the z axis (the easy axis), e.g. a rotation from the |+⟩ to the |−⟩ state.

Typically, these are referred to in Cartesian coordinates, where are rotation

can be about the x or y axis, to change the energy value, or z projection. A

phase gate produces a rotation about the easy axis, and does not change the z

12

projection.

Using ESR, we can achieve single qubit rotation, and induce phase changes

(C. A. Collett et al., 2024). A CNOT gate functions as the entangling gate,

and requires the operation to be applied to two interacting qubits. Since it

is a controlled gate, there must be a control qubit, whose state influences the

outcome of the target qubit. If we take the simplest two qubit case, there are

four permutations of the states of these two qubits: 00, 01, 10, and 11. Here,

the first digit corresponds to the control qubit, and the second digit, the target

qubit (Williams, 2011). Since one requirement for a quantum gate is that they

must be reversible, there must be an exact one to one mapping between the

input state to the output. This one to one mapping can be visualized in the

form of a matrix, with the standard matrix representation of a CNOT being:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0.


Here the rows and the columns each correspond to a possible permutation

of the qubit pair. The matrix therefore represents how one permutation would

be affected by the CNOT gate. For example, if we take the first row and first

column to be the permutation 1, 1, where the columns are the start state, and

the rows are the end state, the 1 in the [1,1] element shows that no change

to the end state would be made. This is not the case when the control qubit

starts as |0⟩ - a fact that is inherent to this functioning as a CNOT gate. When

the control qubit starts as |0⟩, the target qubit’s state is inverted. To further

clarify this function, a full diagram of start states and their corresponding end

states is shown below.

13

|1, 1⟩ → |1, 1⟩

|1, 0⟩ → |1, 0⟩

|0, 1⟩ → |0, 0⟩

|0, 0⟩ → |0, 1⟩

Of course, the input state could be any superposition of these permuta-

tions, and then these would be proportionally mapped to their respective output

states. This matrix representation holds for a two qubit system with two S = 1
2

spin qubits, however; for a 2 qubit system with S = 1 spin qubits, a nine by nine

matrix is required, along with a more complicated scheme for implementing this

gate.

In 2020, Collett et al. published a paper simulating a scheme for driving a

CNOT gate for the Cr7Mn system (C. Collett et al., 2020). They did this by

using the four lowest energy states. They were able to do this because when the

easy axis (axial) energy term is larger than than the other terms the system can

be truncated to ann effective S = 1
2 system (C. Collett et al., 2020). However,

this system requires a free evolution of state, resulting in a tgate of 924ns. T2

for Cr7Mn is 15µs, so this tgate would not allow the application of many gates

within T2, making this significantly slower than ideal for a quantum gate. From

equation 1, if we assume that T2 has been maximized, the way to improve a

qubit is to decrease the time it takes for a gate to operate. This thesis aims

to investigate possible alternative active schemes that act as a CNOT gate.

These schemes, by avoiding the free evolution state, should be faster than the

previously found time.

14

3 Theory

The giant spin Hamiltonian of Cr7Mn can be expressed as

H = −DS2
z + E(S2

x + S2
y) + gµBBzSz. (4)

The constants D and E are values determined empirically, and are inherent to

a given system. The D term corresponds to the energy along the easy axis

(axial anisotropy), and the E term to the energy along the hard axis (the axis

perpendicular to the alignment of the intrinsic magnetic moment, also called

the transverse anisotropy). The final term corresponds to the energy due to

the spin interacting with an external static field Bz. Since we are interested

in exploiting the clock transition which occurs in zero external field, we will be

setting Bz = 0 (C. Collett et al., 2020). This means the Hamiltonian for one

monomer can be expressed as

H⟩ = −DiS
2
zi + Ei(S

2
x + S2

y). (5)

Individual molecules of Cr7Mn can be combined into two molecule pairs,

dimers, which interact through magnetic spin-spin interactions (Hore, 1999).

This interaction functions as a bilinear exchange interaction, which introduces

the following term to the Hamiltonian,

Hcoupling = S⃗1 · Ĵ · S⃗2 (6)

where S⃗1 is the spin of qubit 1, S⃗2 is the spin of qubit two, and Ĵ is the tensor

which describes the coupling. Ĵ depends on the distance between the monomers,

the linker that forms the dimer, the magnetic moments of the qubits, and will

be determined empirically in the future. The dimer Hamiltonian can thus be

15

expressed as

Hdimer = H1 +H2 +Hcoupling, (7)

where H1 is the Hamiltonian for one monomer in the dimer, and H2 is the

Hamiltonian for the second monomer. For the purposes of this thesis, we have

chosen units where ℏ = 1, so the energy can be discussed in terms of frequency.

In this form, we used the empirically determined constants D1 = 21GHz,

E1 = 1.95GHz, D2 = 16.5GHz, and E2 = 2.6GHz to define the individual

Hamiltonians (C. Collett et al., 2020).

As mentioned in the background section, one way of interacting with these

spin states is through electron spin resonance. To achieve a transition, a radio

frequency (RF) pulse is applied to the sample. Spin transitions are induced by

applying RF pulses with the transition frequency set to be at or near the energy

difference between quantum states. As seen in appendix A, specific transitions

require certain spin operators. These spin operators define the axis of applied

torque in the transition. These transitions act like rotations (see the Bloch

sphere in figure 2 for a visualization), so to transition to a desired state from a

specific state, the correct axis about which the torque is applied must be chosen.

When the RF contribution to the spin Hamiltonian is added in, this yields the

full expression for the Hamiltonian

Hdimer = H1 +H2 +Hcoupling +HRF . (8)

How HRF is constructed will be discussed further in the methods section.

The heterodimer is constructed in such a way as to have some degenerate

energy transitions. However, as can be seen in equation 7, this degeneracy is

broken by the coupling between the two molecules. The Ĵ term in equation 6

16

can be approximated by splitting it into an axial term and a transverse term.

This value cannot exceed the value used for E without violating the assumptions

leading the giant spin approximation. Therefore, we are restricted to look at Ĵ

values less than E. The energy levels for our system are plotted against various

axial coupling values is shown in figure 3a, and against transverse coupling

values in figure 3b.

(a) Energy against transverse coupling (b) Energy against axial coupling

Figure 3: The energy eigenstates for Cr7Mn against the coupling values

This figure shows how the degeneracy could be broken, with greater differ-

ences in between degenerate states as the coupling strength is increased. Hinted

at in the image is the fact that without coupling, there are several degenerate

transition. Any transition in one qubit is unaffected by the state of the other,

so for example the transitions |−−⟩ to |+−⟩ is degenerate to |−0⟩ to |+0⟩. The

first two of these transitions are explored in this thesis. With coupling, the de-

generacy of these transtions is broken. For |−−⟩ to |+−⟩ and |−0⟩ to |+0⟩ with

an axial coupling value of 0.16GHz, there is a difference of 0.016GHz. This dif-

ference can be exploited to conditionally drive transitions in one molecule based

on the state of the other. Since the only difference between the first transition

17

and the second is the state of the second qubit, the difference in energy comes

from the different coupling values when the qubit is in either the |−⟩ state or

the |0⟩ state. Thus, the overall outcome is governed by the state of the second

qubit. The first qubit is in both cases changing from a |−⟩ state to a |+⟩ state,

performing an inversion. By definition, a CNOT acting on a qubit pair drives

an inversion on one qubit, conditioned by the state of the other qubit. Thus,

driving the |−0⟩ to |+0⟩ and not |−−⟩ to |+−⟩ would act as a CNOT gate. By

exploiting coupling, the gate can be achieved using active transitions. This has

has the potential to be faster than the passive scheme used by C. Collett et al.,

2020, when similar coupling values are used.

Potential RF pulses to create this active gate were simulated using Quantum

Tools in Python (QuTiP) (QuTiP, 2024). In order to evaluate the efficacy of

these pulses, a figure of merit for the gate is needed. The one chosen here is

fidelity,

F(ρ1, ρ2) = tr

√
ρ

1
2
1 ρ2ρ

1
2
1 , (9)

where ρ1 corresponds to a reference state, and ρ2 to the end state of the sim-

ulation (Chiesa et al., 2024). F functions by comparing the end state of the

simulation to a known outcome. It is worth noting that these fidelities are calcu-

lated in the interaction picture. The interaction picture has both time evolving

operators and states, and therefore removes the constant z precession.

The simulations solve the time dependent Schrodinger equation numerically.

This can be done either by directly simulating the evolution of states given a

time dependent Hamiltonian, or by simulating the transformation matrix that

corresponds to that evolution, called the propagator (QuTiP, 2017). The prop-

agator can be used to calculate the state evolution for any given input state

with significantly less computation, so that is the method used in this thesis

18

3.1 Quantum Algorithms

To ensure that a gate will function as intended in a quantum computer, we can

simulate quantum algorithms with this gate. If the algorithm runs as intended,

then mathematically the gate must be achieving the same function as the ideal

gate in the algorithm.

One commonly used quantum algorithm is phase estimation (Classiq, 2024).

This uses the inverse quantum Fourier transform which, both in function and

implementation, is the exact reverse of the quantum Fourier transform. There-

fore, we begin with a discussion of the quantum Fourier transform.

The quantum Fourier transform performs the same function as the classical

Fourier transform, but due to its implementation on a quantum computer it

would be significantly faster. For an arbitrary state this can be expressed as,

N−1∑
j=0

xj |j⟩ →
N−1∑
j=0

yk |k⟩ . (10)

Here the arrow represents the application of the quantum Fourier transform,

where the quantum state |j⟩ is transformed into the quantum state |k⟩. xj ,

the amplitude is transformed into the corresponding amplitude yk. This can be

understood with the same applications as the classical fourier transform. For

example, |j⟩ could be a state in time space, which could then be transformed

into |k⟩, some state in frequency space. The formal definition of the Fourier

transform is given by

|j⟩ = 1√
2n

2n−1∑
j=0

e2πijk/2
n

|k⟩ , (11)

where n is the number of qubits, such that |0⟩ |2n − 1⟩ represents the com-

19

putational basis. From equation 11, one can arrive at the result for n qubits,

|j1, j2, . . . , jn⟩ =
(|0⟩+ e2πi0jn |1⟩)(|0⟩+ e2πi0jn−1jn |1⟩) · · · (|0⟩+ e2πi0j1j2...jn |1⟩)

2n/2
,

(12)

Here we are transforming n arbitrary quantum states, much like we saw in

equation 10, except that our state |k⟩ is now represented in the various super-

positions of |0⟩+ |1⟩. For a full walk through of the algebra, please see Neilsen

and Chuang, 2010.

Equation 12 will be useful when looking at quantum phase estimation

(Neilsen and Chuang, 2010). By examining how rotation gates act upon each

state, it can be shown that one can build up this representation by applying Rn

rotation gates to each qubit. Following these rotations, swap operations (swap-

ping the states of the two qubits in the operation) then need to be performed to

reorder the qubits to the output to match equation 12. To achieve the inverse

quantum Fourier transform these steps are just performed exactly in reverse.

The inverse fourier transform is the heart of the quantum phase estimation al-

gorithm. A brief explanation of this is below, and an in depth discussion can

be found in Neilsen and Chuang, 2010.

The goal of the phase estimation algorithm is to determine the phase of a

given controlled unitary operator, Û . As will be shown below, an operator of

this description must have eigenvalues of the form e2πiφ. The phase estimation

algorithm produces an estimate for the value of φ (Neilsen and Chuang, 2010).

To begin a discussion of the quantum phase estimation algorithm, a con-

trolled unitary operator, Û , is constructed. By definition,

U |λ⟩ = λ |λ⟩ , (13)

where λ is the eigenvalue corresponding to the eigenvector |λ⟩. Since Û is

20

unitary, if equation 13 is multiplied by its Hermitian conjugate we find,

⟨λ|U†U |λ⟩ = λλ∗ ⟨λ|λ⟩ , (14)

⟨λ|λ⟩ = λλ∗, (15)

1 = |λ|2. (16)

This necessitates that

λ = eiφ (17)

where φ is the phase (H. Gupta, 2021). So we now know that we are searching

for φ, as it appears in

U |λ⟩ = eiφ |λ⟩ . (18)

The key to extracting φ is phase kickback. First a control qubit is prepared

in an equal superposition of the |0⟩ and |1⟩ states using a Hadamard gate. Then

the controlled U gate is applied to the target qubit in state |λ⟩, with the resulting

state of the combined control qubit and target qubit being

|0⟩+ eiφ |1⟩√
2

|λ⟩ . (19)

This is because it is a controlled operator being applied and the |0⟩ state will

not allow a transition, while the |1⟩ state does. Since it is an eigenvector, the

state, |λ⟩, of the target qubit remains unchanged. Therefore the only change is

the addition of a phase to the control qubit (H. Gupta, 2021).

In practice, because the phase value φ can always be represented by

φ = 2πφ′, (20)

21

where φ′ has values only between 0 and 1, the phase φ can be represented as a

binary fraction. A binary fraction is a way of representing a base ten fraction

in binary. For example, the fraction 3
4 is 0.11 as a binary fraction. There is a

1 in the first decimal place, corresponding to 1
2 and a 1 in the second decimal

place, corresponding to 1
4 . Adding these results in the fraction 3

4 . With a small

leap in intuition, given this representation, it would be ideal for one qubit to

contain one ‘bit’ of information in the representation of φ. If

φn = 0.φ1φ2φ3..., (21)

then one qubit would be required for φ1, one qubit for φ2 etc.

One way to see how this is achieved is to look at how a system with the

control qubit in an equal superposition of |0⟩ and |1⟩ states behaves when the

controlled operator is applied 2j times. Here, j is a number between 0 and n (the

number of qubits) −1. From equation 19, one can see that for 2j applications

the result would be

(
|0⟩+ eiφ2j |1⟩√

2
) |λ⟩ . (22)

Again, here |λ⟩ is the state from the target qubit, and the rest of the expression

is the state of the control qubit. From the concepts discussed above, this can

be re expressed as

|0⟩+ e2πiφ
′2j |1⟩√

2
|λ⟩ . (23)

Due to this computation being in base 2, multiplying by 2j just moves the

information in the jth place to the left by j places in the the binary fraction

expression. If we take for example equation 21, and multiplied by 22, the result

would be

22φn = φ1φ2.φ3φ4... (24)

22

It is worth noting the shift of the decimal point in the result. With this un-

derstanding, and following some simplification (H. Gupta, 2021), this results

in

=
|0⟩+ e2πi0.φj+1φj+2φj+3...φn |1⟩√

2
|λ⟩ . (25)

In order to set up for the last step of the algorithm, the controlled operation

is applied to n qubits. This determines the resolution of the estimation, because

each of these qubits contains the information for the j+1th place on the phase, in

the first decimal place for the operator applied 2j times. As mentioned earlier,

|λ⟩ can be factored out, since it is unchanged throughout the operation. All

together, this results in the following state of the control qubit:

1

2n/2
(|0⟩+ e2πi0.φn |1⟩)(|0⟩+ e2πi0.φn−1φn |1⟩)...(|0⟩+ e2πi0.φ1φ2φ2...φn |1⟩). (26)

Comparing this to equation 12, we can see they have the same form. Therefore,

by applying the inverse Fourier transform we should be able to extract the

information in phase bit by bit (Neilsen and Chuang, 2010). In this case the

nth qubit will correspond to the nth decimal place of φn.

4 Methods

The primary methods for this thesis can be divided into two parts. The first of

these is direct pulse level simulation, done in QuTiP, as described in the theory

section (QuTiP, 2024). This method is used to find specific pulses tailored to

our system. The second of these is a circuit level simulation in Qiskit (IBM,

2024). This allowed for easy implementation of quantum algorithms, but being

higher level, did not use specific system-determined pulses.

For pulse level simulations, a Hamiltonian of the form of equation 7 is used

to define the spin system. An RF pulse can be applied, the contribution of this

23

term to the Hamiltonian can be expressed as

HRF = A(t)cos(ωt)(S1i + S2i), (27)

where A(t) is the time dependent amplitude of the pulse, ω is the frequency

used to drive a given transition, and (S1i + S2i are the spin operators used to

drive the transition. As discussed in Theory, a given transition needs a specific

spin operator. Appropriate spin operators for transitions are listed in Appendix

A. For their ease of simulation (and creation later in the lab), we simulated RF

pulses in the form of square waves, with amplitudes

A(t) = 0.1GHz. (28)

This amplitude is significantly higher than that used in C. Collett et al., 2020.

However, pulses of this strength are feasible with current amplifiers and higher

amplitudes make it significantly easier to implement an active gate scheme on

our system. Of interest were transitions whose degeneracy was broken by cou-

pling. We investigated two schemes, alpha (α) using the following transitions:

|−0⟩ → |+0⟩ and |−−⟩ → |+−⟩ and the beta (β) scheme using the following

transitions: |+−⟩ → |+0⟩ and |−−⟩ → |−0⟩. The frequency used was the exact

energy difference between the desired end state and desired start state. This

corresponded to

ωα = E+0 − E−0, (29)

and

ωβ = E+0 − E+−, (30)

where En corresponds to the energy of n state, ωα is the frequency used for

transition pair α and ωβ is the frequency used for transition pair β.

24

We expect square pulses to be wide in frequency space, so to avoid driving

nearby transitions we switched to a pulse which is narrower in frequency space.

The pulses we chose to use were Gaussian pulses. These pulses were defined

with the form,

A(t) = w1e
−(t−2d)2

d2 , (31)

where w1 is the amplitude, and d is the width. Appendix B contains an imple-

mentation of this pulse level simulation.

Both w1 and d were varied when searching for the pulses with the highest

fidelities. This search was conducted with an evolutionary algorithm which can

be found in Appendix C. This algorithm is how the pulse presented in Results

was found.

(a) Energy against time for a gaussian pulse,
amplitude of 2.04MHz, and width set to 140ns.

(b) Energy against time for a square pulse, am-
plitude of 0.1, and width set to 40ns.

Figure 4: The shapes of both types of pulses used in this thesis

Figure 4 shows both of these shapes of pulses in time space, the Gaussian

pulse in figure 4a and the square pulse in figure 4b.

The second type of method in this thesis is a higher level quantum circuit

implementation, done in Qiskit (IBM, 2024). A quantum circuit is a set of

25

qubits which are subsequently acted upon by a series of gates, and typically

some part of the qubits’ state is measured at the end of the circuit to see the

effect of the gates. Rather than work at a pulse level, and simulate the pulses

which act as gates, entire pre-made gates were applied. These gates are assumed

to be perfect, and achieve exact transitions every time they were applied. This

is a sharp difference from the gates made from pulses, which do not necessarily

behave like a perfect gate. This method is how the quantum phase estimator

was implemented to test the viability of the iCNOT gate. Figure 5 shows the

circuit used in this phase estimation. It shows 3 qubits (q0, q1, q2), which act

as the control qubits and along with the eigenvector (c) have the controlled

U gate applied to them 2j times. This gate is given by circuit-647 in the

diagram. Shown also are the Hadamard gates at the start (H) to set up the equal

superposition, and the inverse quantum Fourier transform (IQFT dg), which are

built into Qiskit.

Figure 5: A diagram of the quantum circuit used for phase estimation

Crucially, here ideal gates were used, either Quskit’s predefined gates, or

26

the matrix defined iCNOT. The pulse level activities that were the subject of

method one were not looked at. This means it was assumed we had the perfect

way to implement every gate, and every gate was precisely and perfectly defined.

This implementation will be discussed further in results, and the code can be

found in Appendix D.

5 Results

We will begin by presenting the results from the QuTiP pulse simulations, at-

tempting to find a CNOT gate with high fidelity. The first pulses tested were

square waves set to drive the transition |−0⟩ → |+0⟩ (see figures 3a and 3b),

while not driving the |−−⟩ → |+−⟩ transition. In Figure 6 the probability

with respect to time of the qubit being found in the desired |+0⟩ state starting

from the |−0⟩ state is shown. In the plots below, the fidelity is plotted, which

is defined in the Theory section. In a pure state, an intuitive mathematical

definition is

Fidelity = | ⟨ψa|ψb⟩ |2 (32)

where ψa is the simulated state, and ψb is the desired ideal state. The orange

line is the fidelity that the qubit starting in |−0⟩ will be found in the target

state (in this case |+0⟩). Here we show that the desired transition is taking

place, with the final fidelity being 99.99%.

27

Figure 6: Simulated transition using a square wave shape, with the transition frequency
set to be correct for a |−0⟩ to |+0⟩ transition, acting on a pure |−0⟩ state

However, Figure 7 shows that a square wave is untenable. The undesired

|−−⟩ to |+−⟩ transition still has a 92.17% chance of occurring when driven by

the frequency appropriate for a |−0⟩ to |+0⟩ transition in a square wave shape.

Figure 7: Simulated transition using a square pulse, with the transition frequency set
to be correct for a |−0⟩ to |+0⟩ transition, acting on a pure |−−⟩ state

To avoid driving the non-target transition, Gaussian pulses were used. Gaus-

sian pulses have a smaller spread in frequency space (and this can be tightened

further by extending the pulse in time space). This allows a more precise tar-

geting of a given transition. In all of the following Gaussian pulse trials, the

28

pulse used had an amplitude of 2.04MHz, and a width of 140.5ns, which was

pulse selected for its high fidelity using the evolutionary algorithm in Appendix

C. In figure 8, the transition from a |−0⟩ to |+0⟩ is shown, comparing to a

pure |+0⟩ state, and driven by a Gaussian pulse with an energy tailored for this

|−0⟩ → |+0⟩ transition. The fidelity of being in the |+0⟩ state is 99.9%, showing

a successful transition.

Figure 8: Pure state fidelity of driving a |−0⟩ → |+0⟩ transition when using a |−0⟩ →
|+0⟩ frequency. The pulse width is 140.5ns, and amplitude 2.04MHz

With this set up, and in contrast to the square wave result, when this pulse

is applied to a pure |−−⟩ state, the probability of transition to a |+1⟩ state is

only approximately 10%. This transition is shown in figure 9.

29

Figure 9: Pure state fidelity of driving a |−−⟩ → |+−⟩ transition when using a
|−0⟩ → |+0⟩ frequency. The pulse width is 140.5ns, and amplitude 2.04MHz

To check how well this pulse worked on a more general state, the same

Gaussian pulse was applied to an equal superposition of the |−−⟩ and |−0⟩

states. This is shown in figure 10. The fidelity of this transition is only 54.0%,

represented as previously by the orange line. However, the blue represents the

fidelity not in the interaction picture. Noticing that the fidelity does reach

100% in the amplitude suggests that the result from the pulse is differing by

some phase to the predicted output.

30

Figure 10: Transition from the super-positioned state of |−−⟩ and |−0⟩ compared to
a final state of |−−⟩ and |+0⟩. The pulse width is 140.5ns, and amplitude 2.04MHz

This supposition is reinforced by examining the propagator corresponding
to a Gaussian pulse with width 140.5ns, and amplitude 2.04MHz, which is given
by equation 33.

P =



−0.52 + 0.83j 0 0 0 0 0 0 0 0

0 0.96 + 0.24j 0 0 0 0 0 0 0

0 0 0.94 − 0.32j 0 0 0 0 0 0

0 0 0 −0.47 − 0.88j 0 0 0 0 0

0 0 0 0 −0.01 + 0.01j 0 0.59 + 0.81j 0 0

0 0 0 0 0 0.31 + 0.95j 0 0 0

0 0 0 0 −0.59 + 0.81j 0 −0.01 − 0.01j 0 0

0 0 0 0 0 0 0 0.31 − 0.95j 0

0 0 0 0 0 0 0 0 1



.

(33)

This equation shows the propagator corresponding to the simulated Gaussian

pulse with a width of 140.5ns, and an amplitude of 2.04MHz. The elements are

presented to two significant figures. Considering in particular the off diagonals

at [4,6] and [6,4] (where the first row and column are indexed as 0), which are the

indices driving the energy transition, we see that they contain a non-negligible

imaginary that differs from any global phase change. This indicates that there

is a phase change being driven here as well as an energy transition.

Due to the realizations above, the simulation was rerun, but comparing

31

the fidelity to the outcome that would be from a CNOT with 1j terms in the

indices driving the transition (referred to as an iCNOT). The matrix used is

shown below

iCNOT =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 i 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 i 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (34)

The fidelity of the pulse output compared to the ideal iCNOT ouptut acting

on 1√
2
(|−−⟩+ |−0⟩) is shown in figure 11. This figure shows that compared to

the ideal output from a CNOT with a phase change, the pulse has a very high

probability of driving the state 1√
2
(|−−⟩+ |−0⟩) to the state 1√

2
(|−−⟩+ |+0⟩),

which is exactly the desired transition for a CNOT. The measured fidelity was

99.92%.

32

Figure 11: Fidelity of being in the state given by multiplying the iCNOT matrix above
by the start state compared to the state due to the transition from the Gaussian pulse.
The pulse width is 140.5ns, and amplitude 2.04MHz

In the case of these simulations, the quantum system was initialized in states

that formed a mutually orthogonal basis set, so the entire vector space could

be tested, for the possible superpositions of the states: |−−⟩, |+−⟩, |−0⟩, and

|+0⟩ (Fields and Wootters, 1989). The average of these fidelities was 99.88%.

An alternative scheme of driving the |+−⟩ to |+0⟩ transition, while not

driving the |−−⟩ to |−0⟩ transition was also investigated. These states have

the same relationship as the previously described scheme, and the results of the

application of the Gaussian pulse on an equal superposition of the |−−⟩ and

|+−⟩ states is shown below in figure 12.

33

Figure 12: An equal superposition of the |−−⟩ and |+−⟩ states being driven by the
Gaussian pulse, compared to outcome of the iCNOT gate. The pulse width is 140.5ns,
and amplitude 2.04MHz

Even when compared to the iCNOT, there was still only mediocre probability

of being in the expected state (|+0⟩ + |−−⟩), and the amplitude not in the

interaction picture never reached one. This hinted that there were more than

differences in phase at play, and therefore this scheme was not pursued further.

6 Discussion

The results above indicate that a pulse has been found that has a very high fi-

delity for driving the |−0⟩ → |+0⟩ transition while not driving the |−−⟩ → |+−⟩

transition. However, we have also shown that doing this transition with the

Gaussian pulse shown in methods, with a width of 140.5ns and an amplitude

of 2.04MHz, accumulates an extra phase from that of the traditional CNOT

gate, creating what we are calling an iCNOT gate. To ensure that the iCNOT

gate could function equivalently to the CNOT gate a quantum phase estima-

tion algorithm (as described in the Quantum Algorithms portion of Theory) was

34

implemented using the second type of simulation involving Qiskit. Described

in full above, this method involved defining ideal gates in matrices, and then

applying these to a quantum system. These were tested for the mutually orthog-

onal basis set of quantum states (Fields and Wootters, 1989). The simulation

produced binary fraction values for the phase of the gate of interest, which were

then converted into traditional fractions. These fractions correspond to the

value of φ, the phase of the controlled operator that is being tested. Due to the

probabilistic nature of the calculation, small differences in the proportion of the

eigenvalues can be ignored. The results of phase estimation for the iCNOT and

the CNOT are in table 1.

Input Phase CNOT Phase iCNOT Phase Difference
[0, 1] (512)0 + (512) 12 (504) 14 + (520) 34

1
4

[1, 0] (522)0 + (502) 12 (511) 14 + (513) 34
1
4

1√
2
[1, 1] (1024)0 (1024) 14

1
4

1√
2
[1, -1] (1024) 12 (1024) 34

1
4

1√
2
[1, i] (523)0 + (501) 12 (523) 14 + (501) 34

1
4

1√
2
[1, -i] (510)0 + (514) 12 (518) 14 + (506) 34

1
4

Table 1: Results of the phase estimation algorithm for both the CNOT and iCNOT
gates. The fractions represent the phase and the coefficients in front of each fraction
represent the number of individuals in the simulated population (total number = 1024)
that had this phase.

Table 1 shows that no matter the input, there is a consistent 1
4 phase dif-

ference between the two gates. This means that not only does the iCNOT gate

function in a quantum algorithm as intended, and produces the expected eigen-

values for its eigenvectors, but it differs from the CNOT gate by a constant and

therefore predictable phase. The iCNOT gate drives the |−0⟩ to |+0⟩ transition,

and not the |−−⟩ to |+−⟩ transition, as desired, and if doing a computation

requiring phase, one could correct just by this constant factor of 1
4 . Thus, the

iCNOT gate presented above in the form of a Gaussian pulse would be able to

function as a CNOT gate.

35

As expected, this active scheme was significantly faster than the passive

scheme initially proposed. The pulse found with highest fidelity had a gate

duration of 140.5ns, while the passive scheme took 924ns (C. Collett et al.,

2020). This speed up would allow more many more gates to be operated within

the same time period, which would significantly increase the value of η. There is

also evidence that further speed increases are possible by optimizing pulses with

shorter widths. There were numerous pulses in the 60ns range with fidelities of

97% before being fully optimized, leaving open the possibility of fidelities close

to the 99% reported above.

The work presented here made several assumptions and idealizations of the

qubits involved. One of these was that there was no decoherence. This could be

introduced into the QuTiP simulation, and would provide a much more realistic

picture of how this gate would work in practice. Including this, states would not

stay perfectly the same value throughout the simulation, which would account

for one of the greatest contributions to experimental error. The impact of this

idealization is hopefully small because the effects of decoherence are already

limited. This is due to the choice of an MNM with a clock transition, which

maximizes the coherence time.

We also chose an arbitrary value for the coupling between spins. While

this was in the expected range of greater than 0 and less than the E value

(see equation 7), it has not yet been determined experimentally. Since this

value will affect how quickly the phase changes, the specific pulse width and

amplitude will have to be adjusted based on the actual coupling. This should

be straightforward with an evolutionary search algorithm such as that presented

in Appendix C. It is likely similar fidelities can be achieved across the possible

range of coupling values. However, there is evidence that increasing the coupling

value may decrease fidelity (C. Collett et al., 2020), or possibly since our system

36

uses the energy difference induced by coupling we may see a reduction in fidelity

with lower coupling values. We do not expect there to be a significant reduction

in fidelity but this requires more study.

These pulse level simulations are also limited in quantum computational

scope. Only two qubits were used, far fewer than needed for a functional quan-

tum computer. Additionally, the higher energy spin states (not the ground

state) which could be used for quantum error correction were not explored.

However, this project exists as a proof of concept for the viability of specific

MNMs as qubits (using Cr7Mn as our example MNM). As such, the work here

presents a successful active scheme that would perform the role of a CNOT gate

for a system using Cr7Mn molecules as qubits. Along with the existing gates

for the Cr7Mn system we already have, the iCNOT gate presented here, with

its significantly faster time to act, improves the potential viability of Cr7Mn as

a qubit.

The next steps of this project will include testing quantum algorithms from

a pulse level, verifying that our exact pulse will function as an iCNOT gate, not

only the idealized iCNOT as shown here. Additionally, adding in decoherence

and testing a variety of coupling strengths to the simulations will provide more

convincing evidence as to the viability of this system.

References

Chiesa, A, P Santini, E Garlatti, F Luis, and S Carretta (2024). “Molecular

nanomagnets: a viable path toward quantum information processing?” In:

Reports on Progress in Physics 87.

Classiq (2024). Quantum Phase Estimation (QPE). Available at: https://www.

classiq.io/insights/quantum-phase-estimation-qpe.

37

Collett, Charles, Paolo Santini, Stefano Carretta, and Jonatha Friedman (2020).

“Constructing clock-transition-based two-qubit gates from dimers of molec-

ular nanomagnets”. In: Physical Review Research.

Collett, Charles A., Sofia M. Davvetas, Abdulelah Alsuhaymi, and Grigore A.

Timco (2024). An Inexpensive, Configurable Two-Tone Electron Spin Reso-

nance Spectrometer. arXiv: 2407.21782 [physics.ins-det]. Available at:

https://arxiv.org/abs/2407.21782.

Fields, Brian and William Wootters (1989). “Optimal state-determination by

mutually unbiased measurements”. In: Annals of Physics.

Garlatti, Elena, Morten A. Albring, Michael L. Baker, Rebecca J. Docherty,

Hannu Mutka, Tatiana Guidi, Victoria Garcia Sakai, George F. S. White-

head, Robin G. Pritchard, Grigore A. Timco, Floriana Tuna, Giuseppe

Amoretti, Stefano Carretta, Paolo Santini, Giulia Lorusso, Marco Affronte,

Eric J. L. McInnes, David Collison, and Richard E. P. Winpenny (2014). “A

Detailed Study of the Magnetism of Chiral Cr7M Rings: An Investigation

into Parametrization and Transferability of Parameters”. In: Journal of the

American Chemical Society.

Google (2024). AlphaQubit tackles one of quantum computing’s biggest chal-

lenges. Available at: https : / / blog . google / technology / google -

deepmind/alphaqubit-quantum-error-correction/.

Gupta, Aman and Devesh (2022). Implementing Quantum Phase Estimation

Algorithm Using Qiskit. Available at: https://darveshiyat.medium.com/

implementing-quantum-phase-estimation-algorithm-using-qiskit-

e808e8167d32.

Gupta, Harshit (2021). Intro to QPE and Phase Encoding — QPE algorithms.

Available at: https://medium.com/quantum-untangled/intro-to-qpe-

and-phase-encoding-qpe-algorithms-15638a8554b9.

38

Hore, P.J. (1999). Spin-Spin Coupling. Available at: https : / / www .

sciencedirect . com / topics / physics - and - astronomy / spin - spin -

coupling.

IBM (2024). Qiskit. Available at: https://www.ibm.com/quantum/qiskit.

Neilsen, Micheal and Isaac Chuang (2010). Quantum computation and quantum

information. Cambridge University Press.

QuEra (2023). Universal Gate Set. Available at: https://www.quera.com/

glossary/universal-gate-set.

QuTiP (2017). quitip.propagator. Available at: https://qutip.org/docs/4.

0.2/modules/qutip/propagator.html.

— (2024). QuTiP. Available at: https://qutip.org/.

Rao, Ravi (2024). Breakthroughs in Quantum Computing. Available at: https:

//www.wevolver.com/article/breakthroughs-in-quantum-computing.

Roundy, Jacob (2023). Explore 7 future potential quantum computing uses.

Available at: https://www.techtarget.com/searchdatacenter/tip/

Explore-future-potential-quantum-computing-uses.

Schneider, Josh and Ian Smalley (2024). What is a Qubit. Available at: https:

//www.ibm.com/topics/qubit.

Williams, Colin (2011). Explorations in Quantum Computing. Springer London.

A List of possible transitions

Provided below is a list of all of the possible transitions, with the transitions’

energies and spin operators. Given below are the states (corresponding to

−, 0, or+), and also the numerical value which is commonly used in the python

libraries and code in Appendices B and C.

39

Table 2: Table of all available transitions with transition frequencies (with no coupling)
and spin operators

Transition
(states)

Transition
(numerical

value)

Spin Operator Frequency of
transition

0+ →00 7 → 8 Sy (or Sx) E1 +D1 (Sx

with D2 − E2)
++ →+0 3 → 6 Sx D2 − E2

−+ (or +−)
→-0

2 → 4 Sx D2 − E2

0− (or +0) →00 5 → 8 Sy E2 +D2

+− (or −+)
→+0(or0-)

1 → 6 Sy E2 +D2

−− →-0 0 → 4 Sy E2 +D2

+0 (or 0−) →00 6 → 8 Sx D1 − E1

++ →0+ 3 → 7 Sx D1 − E1

+− (or −+)
→0-(or+0)

1 → 5 Sx D1 − E1

0− (or +0)
→0+

5 → 7 Sz 2E2

+− (or −+)
→++

1 → 3 Sz 2E2

−− →-+(or+-) 0 → 2 Sz 2E2

−+ (or +−)
→++

2 → 3 Sz 2E1

−− →+-(or-+) 0 → 1 Sz 2E1

−0 →+0(or0-) 4 → 6 Sz 2E1

−0 →00 4 → 8 Sy E1 +D1

−− →0-(or+0) 0 → 5 Sy E1 +D1

−+ (or +−)
→0+

2 → 7 Sy E1 +D1

B QuTiP implementation of pulse comparison

Presented below is the python function which was used to test a given transition

against the ideal iCNOT matrix.

def GaussianPropagatorSuperI(width, amp, nstart1, nstart2, nend1, nend2,

a, base):

"""Function to compare a given evolution of a super positioned state

40

to the output an iCNOT would give

This is specifically for testing with a 4-6 transition. Initial

structure from Daniel Rodriguez.

Arguments are:

width: width of pulse applied

amp: Amplitude of pulse applied

nstart1: Start state

nstart2: Start state - combination of above creates a 50-50

superposition

nend1: End state 1 (The transition frequency is determined by

nend1-nstart1)

nend2: End state 2

a: modifies the width of the pulse applied (larger a gives a

smaller pulse in frequency space)

base: defines the coeffcients of the superpositioned state

"""

#Define w1, to keep notation consistent

w1 = amp

#Define Hamiltonian with no coupling and zero field

Ham_dimer = df.cr_h_s1(D1, E1, D2, E2, J_a, J_t)

#rf operator. Dependent on transition.

Ham_dimer_rfop2 = Sz1+Sz2

#Define rf coefficient term for our Hamiltonian

def Ham_dimer_rf_coeff(t, args):

w1 = args[’w1’]

41

w = args[’w’]

return (w1)*np.cos(w*t)*np.exp((-(t-2*width)**2)/(a*width)**2)

#Define full Hamiltonian

Ham_dimer_full = [Ham_dimer, [Ham_dimer_rfop2, Ham_dimer_rf_coeff]]

#Current states and energies

dimer_energies, dimer_estates = Ham_dimer.eigenstates()

#Frequency to verify

dimer_w = dimer_energies[6]-dimer_energies[4]

dimer_args = {

’w1’: w1,

’w’: dimer_w

}

#Number of time points

tlen = 2001

#Define the list of times over which the simulation will be run. 2nd

parameter = end point

tlist = np.linspace(0, 4*width , tlen)

#Define the propagator

prop = qt.propagator(Ham_dimer_full, tlist, args=dimer_args)

a = base[0]

b = base[1]

c = base[2]

42

d = base[3]

Initializing real numbers

x = 0

y = -1.0

converting x and y into complex numbers

i = complex(x, y)

#Define the iCNOT matrix

CNOT_z = qt.Qobj([[1,0,0,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0],

[0,0,0,0,0,0,i,0,0],

[0,0,0,0,0,1,0,0,0],

[0,0,0,0,i,0,0,0,0],

[0,0,0,0,0,0,0,1,0],

[0,0,0,0,0,0,0,0,1]],

dims = [[3, 3], [3, 3]])

#Transform the matrix into the energy eigenbasis

CNOT = CNOT_z.transform(dimer_estates, True)

#Initial state

dimer_psi0 = a*dimer_estates[nstart1] + b*dimer_estates[nstart2] +

c*dimer_estates[nend1] + d*dimer_estates[nend2]

#Final state to be compared to

EndState = CNOT*(a*dimer_estates[nstart1] + b*dimer_estates[nstart2]

+ c*dimer_estates[nend1] + d*dimer_estates[nend2])

43

#Array of evolved states, calculated with the propagator

dimer_ev_states = [prop[n]*dimer_psi0 for n in range(len(prop))]

#Z-axis noise reduction operator

def U(t):

return (-1j*Ham_dimer*t).expm()

#Noice reduced states

dimer_ev_states_inter = [U(t).dag()*state for t, state in zip(tlist,

dimer_ev_states)]

#Probability calculator function using expression for fidelity.

dimer_flip_probsz = [[np.abs(EndState.overlap(st))**2 for st in

state]

for state in zip(dimer_ev_states,

dimer_ev_states_inter)]

#Plot

fig, ax = plt.subplots()

ax.set_title(’Probability against time for the transition

’+str(nstart1)+ ’ and ’+ str(nstart2)+’ to ’+str(nend1)+’ and ’+

str(nend2))

ax.set_xlabel(’Time(ns)’)

ax.set_ylabel(’Probability’)

ax.plot(tlist, dimer_flip_probsz, ’.’);

#Print the last point in the array, so the overall fidelity of the

transition can be reported

mpoint = np.array(dimer_flip_probsz)[:,1].argmax()

print("probability of overlap = ",

str(100*dimer_flip_probsz[2000][1]) + "%")

44

return prop, dimer_estates

C QuTiP implementation of pulse evolutionary

algorithm

Below is the code used as the evolutionary algorithm. This is how the pulse of

width of 140.5ns, amplitude of 2.04MHz and fidelity of 99.9% was found.

import sys

sys.path.append(’../../’)

import numpy as np

import qutip as qt

import matplotlib.pyplot as plt

import dimerfuncs as df

from qutip.qip.operations import rotation

import cmath

import random

import copy

#Initialize all constants

#Parameters of our sample, some variation to be expected.

D1 = 21*2*np.pi

E1 = 1.95*2*np.pi

D2 = 16.5*2*np.pi

E2 = 2.6*2*np.pi

45

#Define operators corresponding to this configuration

Sx1, Sy1, Sz1, Sx2, Sy2, Sz2 = df.two_spin_system(1)

#Coupling Values

J_a = 1

J_t = 0

#Define Hamiltonian with no coupling and zero field

Ham_dimer = df.cr_h_s1(D1, E1, D2, E2, J_a, J_t)

#Current states and energies

dimer_energies, dimer_estates = Ham_dimer.eigenstates()

#Coefficients which define the superposition

a = 1/np.sqrt(2)

b = 1/np.sqrt(2)

#Initial state

dimer_psi0 = a*dimer_estates[0] + b*dimer_estates[4]

Initializing real numbers

x = 0

y = -1.0

converting x and y into complex number

i = complex(x, y)

#Define the iCNOT matrix

CNOT_z = qt.Qobj([[1,0,0,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0,0],

46

[0,0,0,1,0,0,0,0,0],

[0,0,0,0,0,0,i,0,0],

[0,0,0,0,0,1,0,0,0],

[0,0,0,0,i,0,0,0,0],

[0,0,0,0,0,0,0,1,0],

[0,0,0,0,0,0,0,0,1]],

dims = [[3, 3], [3, 3]])

#Transform the iCNOT matrix intro the energy eigen basis

CNOT = CNOT_z.transform(dimer_estates, True)

#Final state

EndState = CNOT*(a*dimer_estates[0] + b*dimer_estates[4])

#Number of time points

tlen = 2001

#Define the pulse class

class Pulse:

def __init__(self, width, amp, freq):

self.width = width

self.amp = amp

self.freq = freq

self.tlist = np.linspace(0, 4*self.width , tlen) #Second

parameter = end point

self.prop = self.getProp()

self.fidelity = self.fidelityCalc()

def __repr__(self):

return f"Width: {self.width:.2f} | Amplitude: {self.amp:.5f} |

47

Fidelity: {self.fidelity:.2f}\n"

def pulsePartOfHamDimer(self, t):

"""Define the pulse part of the dimer Hamiltonian

"""

pulse =

(self.amp)*np.cos(self.freq*t)*np.exp((-(t-2*self.width)**2)/(self.width)**2)

return pulse

def getProp(self):

"""Find the propagator for a given Hamiltonian

"""

#rf operator. Dependent on transition.

spinOp = Sz1+Sz2

dimer_args = {

’w1’: self.amp,

’w’: self.freq

}

#Current states and energies

dimer_energies, dimer_estates = Ham_dimer.eigenstates()

#Define full Ham

Ham_dimer_full = [Ham_dimer, [spinOp, self.pulsePartOfHamDimer]]

#Define the propagator

prop = qt.propagator(Ham_dimer_full, self.tlist, args=dimer_args)

return prop

48

def fidelityCalc(self):

"""Calculate the fideltity for a given state

"""

dimer_ev_states = [self.prop[n]*dimer_psi0 for n in

range(len(self.prop))]

#Z-axis noise reduction operator

def U(t):

return (-1j*Ham_dimer*t).expm()

#Noice reduced states

dimer_ev_states_inter = [U(t).dag()*state for t, state in

zip(self.tlist, dimer_ev_states)]

#Expected final state (Used to measure overlap (success of

transition).

dimer_end_statez = EndState

#Probability calculator function. Takes in the evolved states

and measures how much they overlap with end state

dimer_flip_probsz = [[np.abs(dimer_end_statez.overlap(st))**2

for st in state]

for state in zip(dimer_ev_states,

dimer_ev_states_inter)]

return 100*dimer_flip_probsz[2000][1]

#Set up the actual evolutionary algorithm using the pulse class

n = 20 #number of individuals in a population

ratio = 0.8 #ratio of winners to randos in a population

49

generations = 5 # number of generations of evolution

tournamentSize = 4 # number of tournaments to be held

stepSizeWidth = 1 # how much to change the width by when mutating

stepSizeAmp = 0.0001 # how much to change the amplitude by when mutating

allowedWidths = np.arange(60, 80, 0.1).tolist() #range of allowed widths

allowedAmps = np.arange(0, 1, 0.0001).tolist() #range of allowed

amplitudes

#Current states and energies

dimer_energies, dimer_estates = Ham_dimer.eigenstates()

#Frequency to verify

dimer_w = dimer_energies[6]-dimer_energies[4]

def pulseRandos():

"""Function to create pulses with random widths and amplitudes

Creates pulses only with the allowed width and amplitudes

"""

width = random.choice(allowedWidths)

amp = random.choice(allowedAmps)

pulse = Pulse(width, amp, dimer_w)

return pulse

def tournament(pulses, size):

"""Function which holds a tournament between a certain number of

pulses

The pulse with the highest fidelity is declared the winner

pulses: List of current pulses

size: size of the tournament to be held

"""

50

competitors = [None] * size

for i in range(size):

competitors[i] = random.choice(pulses)

winner = max(pulses, key=lambda pulse: pulse.fidelity)

return winner

def ampMutate(amp):

"""Function which mutates the amplitude

Randomly chooses whether to increase or decrease the amplitude

amp: Amplitude of the pulse

"""

coinFlip = random.randint(0, 1)

if coinFlip == 0:

amp += (random.randint(1, 50) * stepSizeAmp)

else:

amp -= (random.randint(1, 50) * stepSizeAmp)

return amp

def widthMutate(width):

"""Function which mutates the width

Randomly chooses whether to increase or decrease the width

width: Width of the pulse

"""

coinFlip = random.randint(0, 1)

if coinFlip == 0:

width += (random.randint(1, 50) * stepSizeWidth)

else:

width -= (random.randint(1, 50) * stepSizeWidth)

return width

51

def mutate(pulse):

"""Function which decides how to mutate a pulse

Based off a 3 way coin flip either mutates amplitude, width or both

pulse: the pulse the be mutated

"""

coinFlip = random.randint(0, 2)

amp = pulse.amp

width = pulse.width

freq = pulse.freq

if coinFlip == 0:

newAmp = ampMutate(amp)

newWidth = width

elif coinFlip == 1:

newWidth = widthMutate(width)

newAmp = amp

else:

newAmp = ampMutate(amp)

newWidth = widthMutate(width)

mutatedPulse = Pulse(newWidth, newAmp, freq)

return mutatedPulse

#Initialize a list of random pulses

pulses = [pulseRandos() for _ in range(n)]

#Initialize arrays

probability = [None] * n

bestPulses = [None] * generations

#For the number of generations (gen) run the evolutionary algorithm

for gen in range(generations):

print(f" This is generation {gen}")

52

currentBest = max(pulses, key=lambda winner: winner.fidelity)

bestPulses[gen] = currentBest

print(f"This is the current best pulse {bestPulses[gen]}")

#sending pulses from generation to tournament, with competitions of

size x

#Decide who gets to evolve

evolvers = [tournament(pulses, 5) for _ in range(int(ratio * n))]

#Evolve the winning pulses

mutated = [mutate(pulse) for pulse in evolvers]

print(mutated)

#Replenish the gene pool with random pulses

randoms = [pulseRandos() for _ in range(n - int(ratio * n))]

#Send back to start again the evolved pulses and some new random ones

pulses = mutated + randoms

print(bestPulses)

overallBest = max(bestPulses, key=lambda pulse: pulse.fidelity)

print(f" This is the overall best {overallBest}")

D Qiskit implementation of the Quantum Phase

Estimation algorithm

Below is the code used to simulate the quantum phase estimate algorithm for

the CNOT and iCNOT gates. The starting point for this code can be found at

A. Gupta and Devesh, 2022.

from qiskit_aer.primitives import SamplerV2

53

from qiskit_aer import AerSimulator

from qiskit import *

#from qiskit.jupyter import *

from qiskit.visualization import *

import numpy as np

from qiskit.circuit.library import QFT

from qiskit.quantum_info import Operator

def my_qpe(w_qubits,s_qubits, gate, initial_state = None, trotter_number

= 1):

"""Function which returns the result of the quantum phase estimation

algorithm

w_qubits: Number of ancillae qubits

s_qubits: Number of qubits needed to initialize the state of the

eigenvector

gate: The gate which the QPE is evaluating

initial_state: Starting state of the simulation

trotter_number: Time scale for the trotterization

"""

repetitions=1

#Initializes the Quantum cicuit with the ancillae and simulation

qubits

qpe_0 = QuantumCircuit(w_qubits+s_qubits,w_qubits)

if (initial_state != None):

#Initializes the state

qpe_0.initialize(initial_state,list(range(w_qubits,w_qubits+s_qubits)))

for i in range(w_qubits):

qpe_0.h(i)

#Performs the trotterization

for j in range(trotter_number):

54

for counting_qubit in range(w_qubits):

#Performs the U^2j repititions

for i in range(repetitions):

qubit_list =

[counting_qubit]+list(range(w_qubits,w_qubits+s_qubits))

qpe_0.append(gate,qubit_list)

repetitions *= 2

repetitions = 1

#Uses the inbuilt QFT gate in Qiskit

qpe_1 = QFT(w_qubits, 0, True , True)

l = [*range(w_qubits)]

#Final result, composed IQFT result

qpe = qpe_0.compose(qpe_1, l)

return qpe

#Code which runs the QPE on a CNOT (easily switched to an iCNOT)

simulator = AerSimulator()

trotter_number = 1

t = 1

Initialize the quantum circuit with the appropriate number of qubits

#w = ancillae qubits

w_qubits = 3

#s = number of qubits needed to initialize the eigenvector

s_qubits = 1

initial_state = [1/np.sqrt(2), 1.0j/np.sqrt(2)]

55

#Defining the Not matrix, and the iNot (which will become the CNOT and

iCNOT respectively)

inot_matrix = np.array([[0.0, 1.0j],

[1.0j, 0.0]])

not_matrix = np.array([[0.0, 1.0],

[1.0, 0.0]])

#Initialize the circuit

cir = QuantumCircuit(1)

#Make sure the gate is unitary

cir.unitary(not_matrix, [0])

#Create a controlled gate out of either the iNot or Not gate

CNOT_gate = cir.to_gate().control(1)

Build the QPE circuit

qpe = my_qpe(w_qubits, s_qubits, CNOT_gate, initial_state=initial_state)

Draw the QPE circuit

display(qpe.draw())

Perform the measurement on the QPE circuit (using the correct qubits)

qpe.measure([0, 1, 2], [0, 1, 2])

Transpile the QPE circuit before running on the simulator

qpe_transpiled = transpile(qpe, simulator)

Run the simulator with the QPE circuit

result = simulator.run(qpe_transpiled).result()

Get counts from the QPE circuit

counts = result.get_counts(qpe_transpiled)

56

Plot the histogram of the counts

plot_histogram(counts, title=’Counts from the simulation’)

57

